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Typical Voting Setting

I A set A of m candidates

I A set V of n votes

I Vote - a complete order over A

I Voting rule - r : L(A)n −→ A

Example

I A = {a,b, c}

I Votes

X Vote 1: a > b > c

X Vote 2: c > b > a

X Vote 3: a > c > b

Plurality rule: winner is
candidate with most top
positions

Plurality winner: a
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Preference Elicitation

Domain: D ⊆ 2L(A)

For a domain (known) D, we are given black box access to a tuple
of rankings (R1,R2, . . . ,Rn) ∈ Dn for some (unknown) D ∈ D. A
query (i,a,b) ∈ [n]×A×A to an oracle reveals whether a > b
in Ri.

Output: R1,R2, . . . ,Rn.

Goal: Minimize number of queries asked.

I For D = {L(A)} : query complexity Θ(nm logm)
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Preference Elicitation cont.

Single peaked domain: O(mn) + O(m logm)1

Single crossing domain:

· · · Voters · · ·

16°C 18°C 20°C 22°C 22°C 26°C 28°C

∀(a,b) ∈ A×A⇒ voters with a � b are contiguous

I Random access: Θ(m2 logn)2

I Sequential access: O(mn+m3 logm),Ω(mn+m2)

1V. Conitzer. “Eliciting Single-Peaked Preferences Using Comparison

Queries”, JAIR 2009.
2D., N. Misra, “Preference Elicitation for Single Crossing Domain”, IJCAI

2016.
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Preference Elicitation – open problems

2-Dimensional Euclidean domain:

I Alternatives A are points in R2 and rankings Ri, i ∈ [n]
correspond to points pi ∈ R2, i ∈ [n].

I Ri is the ranking induced by distance of A from pi.

What is query complexity for 2-dimensional Euclidean domain?
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Preference Elicitation – open problems

Single Crossing Domain on Median Graphs:

I median graph: for any three vertices u, v,w and for any 3
shortest paths between pairs of them pu,v between u and
v, pv,w between v and w, and pw,u between w and u,
there is exactly one vertex common to 3 paths. Ex: tree,
hypercube.

I single crossing property: given a median graph on some
multiset {Ri ∈ L(A) : i ∈ [n]} of rankings, for every pair
i 6= j, the sequence of rankings in the shortest path between
Ri and Rj is single crossing.

on median graphs?
What is query complexity of single crossing domain
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Winner Prediction

r: any voting rule

Given an oracle which gives uniform votes of n voters over m
alternatives, predict the winner under voting rule r with error
probability at most δ.

Goal: minimize number of samples drawn

For A = {a,b}, bn/2c− 1 votes of type a > b, and dn/2e+ 1
votes of type b > a, sample complexity is Ω(n ln 1/δ).

Margin of victory: minimum number of votes need to modify
to change the winner.

Assume: margin of victory if εn.
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Winner Prediction cont.

Plurality rule: sample complexity is Θ
(

1
ε2

log 1
δ

)
(folklore!)

What about other voting rules?

Voting rule Sample complexity

Borda: s(a) =
∑
b6=aN(a > b) Θ

(
1
ε2

log logm
δ

)
Maximin: s(a) = minb6=aN(a > b) Θ

(
1
ε2

log logm
δ

)
Copeland:

s(a) = |{b 6= a : N(a > b) > n
2 }|

O
(

1
ε2

log3 logm
δ

)
Ω

(
1
ε2

log logm
δ

)

A. Bhattacharyya, D., “Sample Complexity for Winner Prediction in
Elections”, AAMAS 2015.
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Winner Prediction Future Directions

I What is sample complexity for winner prediction for
specific domains, for example, single peaked, single
crossing, and single crossing on median graphs?

I What is the sample complexity for committee selection
rules like Chamberlin–Courant or Monroe.
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Liquid Democracy

I If you are not sure whom you should vote, then you can
delegate your friend!34

I Delegations are transitive.

v1

v2 v3

v4

Figure 1: Delegation graph

3J.C. Miller, “A program for direct and proxy voting in the legislative
process,” Public Choice, 1969.

4Kling et al. “Voting behaviour and power in online democracy,”
ICWSM, 2015.
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Pitfalls of Liquid Democracy: Super voter

Voting power can be concentrated in one super voter which may
be undesirable even if he/she is competent.

I Natural solution: put cap on the maximum weight of a
voter.

I Can lead to delegation outside system thereby reducing
transparency!

I Ask voters to provide multiple delegations whom they trust
and let system decide the rest.5

5Gölg et al. “The Fluid Mechanics of Liquid Democracy,” WINE 2018.
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Resolving Delegation Graph

v1

v2 v3

v4v5 v6

Figure 2: Input graph

v1

v2 v3

v4v5 v6

Figure 3: Delegation graph

Given a directed graph G = (V,E) with sink nodes S[G], find a
spanning subgraph H ⊆ G such that S[H] ⊆ S[G] which minimizes
the weight (number of nodes that can reach it) of any node.

Gölg et al. present 1 + lgn approximation and show 1
2 lgn

inapproximability assuming P 6= NP by reducing to the problem
of minimizing maximum confluent flow.
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Restricting Voter Power is Recommended for Efficiency
Reason too

I Assume there are only 2 choices (A = {0, 1}) with 0 being
ground truth.

I Every voter has a potency pi(>
1
2): the probability that its

opinion is 0.

I Gain: given a delegation mechanism, its gain is the
probability that 0 wins minus 0 wins under direct voting.

I Positive Gain (PG): A mechanism is said to have PG
property if its gain is positive for all sufficiently large
instances.

I Do Not Harm (DNH): A mechanism is said to have DNH
property if its gain is non-negative for all sufficiently large
graphs
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Restricting Voter Power is Recommended for Efficiency
Reason too cont.

I No local delegation mechanism has DNH property!6

I There exists a non-local mechanism which satisfies PG
property and the main idea is to provide cap on the weight
of any voter.

6Kahng et al. “Liquid Democracy: An Algorithmic Perspective,” AAAI
2018.
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Participatory Budgeting
In participatory budgeting, community collectively decides how
public money will be allocated to local projects.

I The problem is different from fair resource allocation of
public goods since allocated goods benefit everyone.

I There are n voters, k projects, and the set of allocations is
{x ∈ Rk :

∑k
i=1 xi 6 B}. Let Ui(x) be the utility of voter i

from allocation x.

I Core: An allocation x is called a core if, for every subset
S ⊆ [n], there does not exist any allocation y such that∑
i∈S yi 6

|S|
n B and Ui(y) > Ui(x) for every i ∈ S.

I Core captures fairness notion in this context and an
allocation in the core can be computed in polynomial time
for a class of utility functions. 7

7Fain et al. “The Core of the Participatory Budgeting Problem,” WINE 2016.
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Participatory Budgeting: Preference Elicitation

How voters can express their utility function?

I Knapsack vote: feasible subset κi of projects which gives
maximum utility to voter i.

I Ranking by value.

I Ranking by value for money.

I For a threshold t, a feasible subset of projects which
ensures an utility of at least t.

Benadè et al. “Preference Elicitation For Participatory Budgeting,”
AAAI 2017.
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Participatory Budgeting: Preference Elicitation cont.

How good is an elicitation method? Notion of distortion!

Distortion: fraction of welfare (sum of utilities) loss due to lack
of information.

Elicitation method Distortion

Any method 6 m
Knapsack vote Ω(m)

Ranking by value
O(
√
m logm)

Ranking by value for money

Deterministic threshold Ω(
√
m)

Randomized threshold O(log2m),Ω
(

logm
log logm

)
What is the optimal elicitation method?

Benadè et al. “Preference Elicitation For Participatory Budgeting,”
AAAI 2017.



Participatory Budgeting: Preference Elicitation cont.

How good is an elicitation method? Notion of distortion!

Distortion: fraction of welfare (sum of utilities) loss due to lack
of information.

Elicitation method Distortion

Any method 6 m
Knapsack vote Ω(m)

Ranking by value
O(
√
m logm)

Ranking by value for money

Deterministic threshold Ω(
√
m)

Randomized threshold O(log2m),Ω
(

logm
log logm

)
What is the optimal elicitation method?
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Distortion of Voting Rules

Implicit Utilitarian Voting Model

Although votes are rankings over alternatives, every voter i has
an underlying utility function ui : A→ [0, 1],

∑
a∈A ui(a) = 1.

Distortion of a voting rule: what fraction of welfare
(
∑n
i=1 ui(w) if w wins) it achieves in the worst case compared

to optimal.8

Distortion of any randomized voting rule is Ω(
√
m). The

distortion of harmonic scoring rule (i-th ranked alternatives
receives a score of 1/i) is O(

√
m logm).9

Distortion of optimal social welfare function is Θ̃(
√
m).10

8A. Procaccia and J. S. Rosenschein, “The Distortion of Cardinal
Preferences in Voting,” CIA 2006.

9Boutilier et al. “Optimal Social Choice Functions: A Utilitarian View,”
EC, 2012.

10Benadè et al. “Low-Distortion Social Welfare Functions,” AAAI 2019.
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Metric Distortion of Voting Rules

Implicit Utilitarian Model. Voters and Alternatives are
embedded in a metric space.

I Metric distortion of any rule is at least 3.11

I Metric distortion of plurality and Borda are at least
2m− 1, of veto and k-approval are at least 2n− 1.

I Metric distortion of Copeland is 3.12

11E. Anshelevich and J. Postl, “Randomized social choice functions under
metric preferences,” JAIR 2017.

12Goelet al. “Metric distortion of social choice rules: Lower bounds and
fairness properties,” EC 2017.
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Very Hard Voting Problems

Some natural problems in voting are Σp2 -complete and
Θ
p
2 -complete.

Kemeny rule: Kemeny ranking is a ranking which has smallest
sum of Kendall-tau distances from all votes. Kemeny winner is
the alternative at the first position of a Kemeny ranking.

Deciding if an alternative is a Kemeny winner is Θp2 -complete.13

Constructive Control by Deleting Alternatives (CCDA): Given
a set of votes over a set of alternative and an alternative c,
compute if it possible to delete at most k candidates such that c
wins in the resulting election.

CCDA for Kemeny rule is Σp2 -complete.14

13Hemaspaandra et al. “The complexity of Kemeny elections,” TCS 2005.
14Fitzsimmons et al. “Very Hard Electoral Control Problems,” AAAI

2019.
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