Dynamic And Fault Tolerant Algorithms

Manoj Gupta, IIT Gandhinagar

Dynamic Graphs

The Problem

e The graph is changing
e Maintain solutions of graph theoretic / optimization
problems more efficiently than recomputing from scratch

Dynamic Graphs

The Problem

e The graph is changing
e Maintain solutions of graph theoretic / optimization
problems more efficiently than recomputing from scratch

Types of Changes

e Incremental/Decremental: only insertions/deletions of
edges

e Fully dynamic: both insertions and deletions

Dynamic Graphs

The Problem

e The graph is changing
e Maintain solutions of graph theoretic / optimization
problems more efficiently than recomputing from scratch

Types of Changes

e Incremental/Decremental: only insertions/deletions of
edges

e Fully dynamic: both insertions and deletions

Performance Evaluation
Update time: The time taken to Update the solution

Connectivity

Single source shortest path

All pair shortest path

Strongly connected components

Minimum Spanning Tree

Topological Sorting

Some Definitions

e A matching in a graph is a set of
edges M such that no two edges in
M share a common endpoint

Some Definitions

e A matching in a graph is a set of
edges M such that no two edges in
M share a common endpoint

e We can find a (1 + €)-approximate
matching in a static unweighted
graph in O(g) time (Micali and
Vazirani, 1980)

The Problem

Problem
Maintain approximate maximum matching in a dynamic graph

The Problem

Problem
Maintain approximate maximum matching in a dynamic graph

Model

e At each update step an edge can be added or deleted from
the graph

e Compute the matching quickly after each update

In this talk [G. and Peng (FOCS 2013)]
Maintain (1 + €)-approximate maximum matching in O(@)
update time

Key Idea

Can we find a smaller subgraph G’ of G such that the size of
the maximum matching in G’ is same as the size of maximum
matching in G?

Key Idea

Can we find a smaller subgraph G’ of G such that the size of
the maximum matching in G’ is same as the size of maximum
matching in G?

Answer
Yes : If you have a approximate vertex cover of the graph

(1 + ¢)-Approximate matching

o Assume that we have an oracle access to the vertex cover
Veover at every update step

(1 + ¢)-Approximate matching

o Assume that we have an oracle access to the vertex cover
Veover at every update step

e Use the algorithm of Neiman and Solomon(STOC 2013):
maintain 3/2-approximate matching in a dynamic graph

(1 + ¢)-Approximate matching

o Assume that we have an oracle access to the vertex cover
Veover at every update step

e Use the algorithm of Neiman and Solomon(STOC 2013):
maintain 3/2-approximate matching in a dynamic graph

e Report all the vertices in the matching as Veover

Core Graph

e Include all the edges within the vertex cover
e Foreach u € Vioer, include at most |Veover| + 1 neighbors
outside the vertex cover

| Veover| + 1 neighbors of
uec V\ VCOVef G

Theorem
The size of maximum matching in core graph G’ is same

as the size of maximum matching in G 9

Among all maximum matchings in G, let M’ be one that uses
the maximum number of edges in G'.

10

Among all maximum matchings in G, let M’ be one that uses
the maximum number of edges in G'.

10

Among all maximum matchings in G, let M’ be one that uses
the maximum number of edges in G'.

e By construction, u has | Veover|+1 neighbors outside the
vertex cover in G'.

10

Among all maximum matchings in G, let M’ be one that uses
the maximum number of edges in G'.

e By construction, u has | Veover|+1 neighbors outside the

vertex cover in G'.
e Atleast one of them is unmatched in M’, because |M'| <

size of any vertex cover 10

11

o M« M\ (u,v)U (u,w)

11

o M« M\ (u,v)U (u,w)
e M" is a maximum matching and its intersection with G’ is
larger than that of M’

e A contradiction

11

Partial Algorithm

e Construct a core graph G’ of G
e Find a (1 + ¢/2) approximate matching M in G’

12

Partial Algorithm

e Construct a core graph G’ of G

e Find a (1 + ¢/2) approximate matching M in G’
Size of Core Graph G’

e Size of G' is min{m, O(|Veover|?)}

12

Partial Algorithm

e Construct a core graph G’ of G
e Find a (1 + ¢/2) approximate matching M in G’
Size of Core Graph G’

e Size of G' is min{m, O(|Veover|?)}
O |Vcover| = 2‘M3/2’ < 2|M*| and |M*’ < (1 +€/2)‘M’

12

Partial Algorithm

e Construct a core graph G’ of G
e Find a (1 + ¢/2) approximate matching M in G’

Size of Core Graph G’

e Size of G' is min{m, O(|Veover|?)}
O |Vcover| = 2‘M3/2’ < 2|M*| and |M*’ < (1 +€/2)‘M’
o | Veover| <2(1 +¢/2)|M|

12

Partial Algorithm

e Construct a core graph G’ of G
e Find a (1 + ¢/2) approximate matching M in G’

Size of Core Graph G’

e Size of G' is min{m, O(|Veover|?)}

o |Veover| = 2|M3 2| < 2I[M*[and [M*| < (1 +€/2)|M|
o |Veover| < 2(1 +¢/2)[M|

e Size of G' is min{m, O(|M|?)}

12

Partial Algorithm

e Construct a core graph G’ of G
e Find a (1 + ¢/2) approximate matching M in G’

Size of Core Graph G’

e Size of G' is min{m, O(|Veover|?)}

o |Veover| = 2‘M3/2’ <2|M*|and [M*| < (1 + ¢/2)|M|
° ‘Vcover| < 2(1 +€/2)|M‘

e Size of G' is min{m, O(|M|?)}

min{m, |M|2})

€

e Time to find a matching in G’ is O(

12

(1 + ¢)-approximate matching

Algorithm

e Construct a core graph G’ of G
e Find a (1 + ¢/2) approximate matching M in G’
e Use this matching for the next ¢|M|/2 update steps

13

(1 + ¢)-approximate matching

Algorithm

e Construct a core graph G’ of G
e Find a (1 + ¢/2) approximate matching M in G’
e Use this matching for the next ¢|M|/2 update steps

Analysis

e M can reduce by atmost 1 wrt maximum matching after
each update step

13

(1 + ¢)-approximate matching

Algorithm

e Construct a core graph G’ of G
e Find a (1 + ¢/2) approximate matching M in G’
e Use this matching for the next ¢|M|/2 update steps

Analysis

e M can reduce by atmost 1 wrt maximum matching after
each update step

o After e|M|/2 steps, the matching M is (1 + €)-approximate

13

e If [M| > \/m, the amortized update time is

O(T;;) — () (min{m. M)

14

e If [M| > \/m, the amortized update time is
m6_1 . \/m g 2
of])= O<72> (min{m, |M[2})
o If [M| < /m, the amortized update time is
M|2eT M m .
o(' e) - o(u) - o(f) (min{m, |M|?})

€| M| €2 €2

14

Theorem

Maintain (1 + €)-approximate maximum matching in O(
€

update time

=

15

Make your own problem

e Incremental, Decremental or Fully Dynamic
Unweighted or Weighted graphs

Approximate matching or maximum matching

Randomized or deterministic

Worst case update time or Amortized running time

Directed or Undirected graph

16

Fault Tolerant Algorithms

A Fault Tolerant System continues to perform at a desired level
in spite of failures in some of its components.

17

Fault Tolerant Subgraph Problem

G H

Find a subgraph H of G such that the shortest path from s to all
other vertices are preserved in H. 18

Fault Tolerant Subgraph Problem

e Find a subgraph H of G such that the shortest path from s
to all other vertices avoiding a single edge are preserved in
H.

Fault Tolerant Subgraph Problem

e Find a subgraph H of G such that the shortest path from s
to all other vertices avoiding a single edge are preserved in
H.

Fault Tolerant Subgraph Problem

e Find a subgraph H of G such that the shortest path from s
to all other vertices avoiding a single edge are preserved in
H.
e Parter and Peleg [ESA 2013] showed that O(n®/?) edges
are both sufficient and necessary. 19

Fault Tolerant Algorithm

Data-

Structure

e Preprocess the input to build a data-structure.
e Preprocessing is free.

20

Fault Tolerant Algorithm

Data- Query

Structure Algorithm

e Design a query algorithm that will use your data-structure
to answer queries efficiently.

20

Fault Tolerant Algorithm

Data- Query

Structure Algorithm

e Given a graph G design a data-structure that can answer
the following query: find the length of shortest path from a
source sto vwherev e V.

20

Fault Tolerant Algorithm

Data- Query

Structure Algorithm

e Given a graph G design a data-structure that can answer
the following query: find the length of shortest path from a
source sto v where v € V.

o Store the distances from s in O(n) space, so that queries
can be answered in O(1) time.

20

Our problem

e Given an undirected and unweighted graph G, design a
data-structure that can find the shortest path from a
node s to any destination node avoiding a single edge.

21

Our problem

e Given an undirected and unweighted graph G, design a
data-structure that can find the shortest path from a
node s to any destination node avoiding a single edge.

e Formally, the query algorithm should answer the following
query , QUERY(s, t, e): Find the length of the
shortest path from s to t € V avoiding the edge e.

e Such a (data-structure + query algorithm) is known as
distance oracle.

21

In this talk [G. and Singh, ICALP 2018]

We present a distance oracle of size O(n®/2) that can answer
queries in O(1) time.

22

1. Sample a set of terminals 7 of size O(+/n) vertices.

23

1. Sample a set of terminals 7 of size O(+/n) vertices.
2. With a high probability, on any st path, there exists a vertex
ts € T such that |tst| = O(v/n).

S

23

Ie
t
Near case: e € {5t

[IS

t
Far case: e € sis

24

The Near Case

S
1. Store all replacement paths that avoid edges in fst.
2. Number of shortest paths stored (for a fixed t) is
tst| = O(v/n)
+ &

25

The Near Case

1. Store all replacement paths that avoid edges in fst.

2. Number of shortest paths stored (for a fixed t) is
|tst| = é(ﬁ)

3. The size of the data-structure for a fixed t is O(v/n).

4. The total size of the data-structure is O(n®/2). e

25

The Far Case

S

[15

t

Replacement path passes
through ts

S

[15

t

Replacement path
avoids fs

26

Replacement path passes through ¢

S
1. Store the length of the shortest path from sto t; € T
avoiding each edge on st path.
2. The space taken = # terminals x# edges on sts path de

- O(vA) x n=O(n*2)

27

Replacement path passes through ¢

S
1. Store the length of the shortest path from sto t; € T
avoiding each edge on st path.
2. The space taken = # terminals x# edges on sts path de

= O(v/A) x n= O(r*/?)
3. Store the length of the shortest path from t; € T to
t E V n = ts

4. The space taken = # terminals x# vertices
= O(v/n) x n= O(n*/?)

27

The replacement path avoids f;

S

ai

The replacement path avoids f;

S

a

Main Technical Result
The total number of replacement paths
from s to t that avoid ts is O(v/n).

The replacement path avoids f;

S

ai

(a4, a@s), | Pyl

(a2, a3), |P2|

’ (a1, a2), |P1] ‘ ’ (a3, aq), |P3l ‘ ’ (as, ap), |Ps| ‘ ’ (a7, ts), | Pyl ‘

Size of our last data-structure

Since the size of the BST is O(v/n) (for
a fixed 1), the total size of the
data-structure is O(n®/?).

Main Theorem

There exists a distance oracle of size O(n®/2) that can answer
queries in O(1) time.

29

Main Theorem

There exists a distance oracle of size O(n®/2) that can answer
queries in O(1) time.

Rest of the talk
The total number of replacement paths from s to t that avoid

ts is O(y/7).

29

The replacement path avoids f;

Few basic observations

30

The replacement path avoids f;

Few basic observations

e |s the picture correct? P;

30

The replacement path avoids f;

Few basic observations

e |s the picture correct? P;

e No, because if |Py| < |P»|, then the replacement
path that avoids e, is also P;.

30

The replacement path avoids f;

€4
e |s the picture in the right correct?

e No, because if |Py| < |P»|, then the replacement FP;
path avoid e is also P;.

e Py: The lower replacement path will pass through
the edge avoided by the upper replacement path.

31

The replacement path avoids f;

e Can |Py| > |P;|? °

P4

32

The replacement path avoids f;

e Can |Py| > |P;|? e

e No, because if |P>| > |P;|, then the replacement

P
path avoiding e is P;. 1

32

The replacement path avoids f;

S
e
e Can |P| > |Py|? !
e No, because if |P>| > |P;|, then the replacement p
path avoiding e is P;. 1
e P>: The lower replacement path has length P>

strictly less than the upper replacement path.

32

The replacement path avoids f;

S
e
e Can |P| > |Py|? !
e No, because if |P>| > |P;|, then the replacement p
path avoiding e is P;. 1
e P>: The lower replacement path has length P>

strictly less than the upper replacement path.

Corollary: The length of these paths are distinct.

32

Some Definitions

e Detour of a replacement path.
e Green path or formally P\ st

33

e Process replacement
paths from top to
bottom.

¢ Try to associate v/n
unique vertices of the
detour with each
replacement path

S\

~

34

e Process replacement
paths from top to
bottom.

¢ Try to associate v/n
unique vertices of the
detour with each
replacement path

P4

N

~

34

e Process replacement
paths from top to
bottom.

¢ Try to associate v/n
unique vertices of the
detour with each
replacement path

P4

N

~

34

e Process replacement
paths from top to
bottom.

e Try to associate /n
unique vertices of the
detour with each
replacement path

P;

34

e Process replacement
paths from top to
bottom.

e Try to associate /n
unique vertices of the
detour with each
replacement path

P;

34

e Process replacement o
paths from top to
bottom.

e Try to associate /n
unique vertices of the
detour with each
replacement path

34

e Process replacement o
paths from top to
bottom.

e Try to associate /n
unique vertices of the
detour with each
replacement path

34

Bad case when |bc| < /n

e |Pi| = |sa| + |ac| + |cd| + |dt]

S
a
P
&4
‘b
G €2

35

Bad case when |bc| < /n

e |Pi| = |sa| + |ac| + |cd| + |dt]

e But there is another path from s to t that avoids s
e1. a
P
&4
‘b
c €2
ts

35

Bad case when |bc| < /n

e |Pi| = |sa| + |ac| + |cd| + |dt]

e But there is another path from s to t that avoids s
e1. a
e |sa| + [ac| + |cb| + |bt] Wan
‘b
c €2
ts

35

Bad case when |bc| < /n

e |Pi| = |sa| + |ac| + |cd| + |dt]

e But there is another path from s to t that avoids s
e1. a
e |sa| + [ac| + |cb| + |bt] Wan
- . ‘b
c €2
ts

35

Bad case when |bc| < /n

e |Pi| = |sa| + |ac| + |cd| + |dt]

e But there is another path from s to t that avoids s
e1. a
e |sa| + [ac| + |cb| + |bt] Wan
° ‘b
e cbis the part of the detour. So, it cannot pass
through e;. ¢ &

e Regarding bt, by Py, lower replacement path (P)
passes through the edge avoided by the higher
replacement path. So, b lies below e;. Thus, bt d
doest not contain ey.

35

Bad case when |bc| < /n

e |Pi| = |sa| + |ac| + |cd| + |dt]

e But there is another path from s to t that avoids s
e1. a
e |sa| + [ac| + |cb| + |bt] Wan
° b
e cbis the part of the detour. So, it cannot pass
through e;. ¢ &
e Regarding bt, by Py, lower replacement path (P)
passes through the edge avoided by the higher ts
replacement path. So, b lies below e;. Thus, bt d

doest not contain e;.

¢ Since this path was not chosen by our algorithm t
as the replacement path, its length must be > the
length of P;. 35

Bad case when |bc| < /n

s
e |sa| + |ac| + |cd| + |dt] < |sa| + |ac| + |cb| + |bt| 5 a
1 e

‘b

@ ()

fs

36

Bad case when |bc| < /n

e |sa| + |ac| + |cd| + |dt] < |sa| + |ac| + |cb| + |bt| a
P

= |cd| + |dt| < |cb| + |bt] e

‘b

@ ()

fs

36

Bad case when |bc| < /n

e |sa| + |ac| + |cd| + |dt] < |sa| + |ac| + |cb| + |bt| a
P

= |cd| + |dt| < |cb| + |bt] e

= |bc| + |cd| + |dt| < 2|cb| + |bt| ‘b

@ ()

fs

36

Bad case when |bc| < /n

e |sa| + |ac| + |cd| + |dt] < |sa| + |ac| + |cb| + |bt| a
P
= |cd| + |dt| < |cb| + |bt] e
= |bc| + |cd| + |dt| < 2|cb| + |bt| b
= |bc| + |cd| + |dt| < 2y/n+ |bt|

fs

36

Bad case when |bc| < /n

s
e |sa| + |ac| + |cd| + |dt] < |sa| + |ac| + |cb| + |bt| a
P
= |cd| + |dt| < |cb| + |bt] e
= |bc| + |cd| + |dt| < 2|cb| + |bt| b
= |bc| + |cd| + |dt| < 2y/n+ |bt|
@ (=)

e On the left hand side we have a replacement

path from b to t avoiding e». t
S

36

Bad case when |bc| < /n

s

e |sa| + |ac| + |cd| + |dt] < |sa| + |ac| + |cb| + |bt| 5 a
= |cd| + |dt| < |cb| + |bt] 1 e
= |bc| + |cd| + |dt| < 2|cb| + |bt| b
= |bc| + |cd| + |dt| < 2y/n+ |bt| ‘

e On the left hand side we have a replacement © ©2
path from b to t avoiding e». t

e A good property of this replacement path is that d

its length is just 2/n greater than bt. We now
exploit this property.

36

€2

37

e By Property Py, all these lower replacement path
pass through the edge avoided by P, that is es.

€

37

e By Property Py, all these lower replacement path
pass through the edge avoided by P, that is es.

e We can thus assume that these paths are
starting from b.

€

37

e By Property Py, all these lower replacement path
pass through the edge avoided by P, that is es.

e We can thus assume that these paths are

starting from b. - lb
e By Property P, the lower replacement path have €2
length strictly less than the upper replacement
path, that is P.
+ &

37

By Property Py, all these lower replacement path
pass through the edge avoided by P, that is es.

We can thus assume that these paths are

starting from b. - lb

By Property P», the lower replacement path have €2
length strictly less than the upper replacement

path, that is P.

The corollary of P, states that length of these

paths are distinct. 1t

37

By Property Py, all these lower replacement path
pass through the edge avoided by P, that is es.

We can thus assume that these paths are

starting from b. - b

By Property P», the lower replacement path have €2
length strictly less than the upper replacement
path, that is P.

The corollary of P, states that length of these
paths are distinct. 4t

Length of these path strictly lie in the range
[Ibt], bt +2v/n]

37

By Property Py, all these lower replacement path
pass through the edge avoided by P, that is es.

We can thus assume that these paths are

starting from b. - b

By Property P», the lower replacement path have €2
length strictly less than the upper replacement
path, that is P.

The corollary of P, states that length of these
paths are distinct. 4t

Length of these path strictly lie in the range
[Ibt], bt +2v/n]

37

e By Property Py, all these lower replacement path
pass through the edge avoided by P, that is es.

e We can thus assume that these paths are

starting from b. - b

e By Property P, the lower replacement path have €2
length strictly less than the upper replacement
path, that is P.

e The corollary of P, states that length of these
paths are distinct. 4t

e Length of these path strictly lie in the range

[1bt], |bt| +2v/n] =O(v/n)

Main Technical Result t
The total number of replacement paths from s to ¢
that avoid ts is O(+/n).

37

e We extend the above result to multiple sources.

e The extension, though technically involved, uses the
strategy shown in this talk.

38

Open Problems

e What happens for two edge faults?
e For any general k edge faults?
e Fault tolerant all pair shortest path.

39

40

