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Outline

I Clustering objects by (NP-hard) objectives

I Stable instances

I Are stable instances easy (poly time solvable)? Why?

I Clustering objective, revisited
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Clustering

I Given n data points x1, x2, . . . , xn,
along with a similarity distance d(xi, xj),
and a positive integer k,
partition the points into disjoint clusters
so as to maximize
similar points in the same cluster and
dissimilar points in different clusters.

I Optimization over all k-partitions of the data

I Many simple objectives are NP-hard even for k = 2,
e.g., maximize the sum of d(xi, xj) over pairs not in the same
cluster (a.k.a. the MaxCut problem)
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Stability and MaxCut

I A given instance is α-perturbation stable if the optimal
MaxCut does not change even when distances are perturbed
within a multiplicative factor α > 1.

d(xi, xj) ≤ D(xi, xj) ≤ αd(xi, xj)

I Bilu-Linial (2010) show exact poly time algorithm for
Ω(n)-stable instances of MaxCut.

I Bilu-Daniely-Linial-Saks (2013) improved this to Ω(
√

n)-stable
instances.

I Makarychev-Makarychev-Vijayaraghavan (2014) improved this
to Ω(

√
log n log log n)-stable instances, and showed a

matching negative result.
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Center-based clustering, k-center/median/means

Given a set X of n data points and an integer k > 0, find k centers
c1, c2, . . . , ck that minimize

ϕ(c1, c2, . . . , ck) =

 k∑
j=1

∑
x∈Cj

d(x, cj)
p

q/p


1/q

,

where Cj is the cluster of points that have cj as their nearest center.

p = q = 1 is k-median, p = q = 2 is k-means, and p = q = ∞ is
k-center. All are NP-hard objectives.

For this talk, let’s call it discrete k-center/median/means if we
optimize only over C ⊆ X or some pre-specified discrete set as part
of the input.
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Center-based clustering

I Awasthi-Blum-Sheffet (2012) showed exact poly time
algorithm for 3-stable instances of any center-based objective
such as k-center/median/means.

I Balcan-Haghtalab-White (2016) showed exact poly time
algorithm for 2-stable instances of symmetric/asymmetric
k-center. No polytime algorithm for (2 − ϵ)-stable instances
unless NP=RP.

I Balcan-Liang (2016) improved this to (1 +
√

2)-stable
instances of k-center/median/means.

I Angelidakis-Makarychev-Makarychev (2017) improved this to
2-stable instances of k-center/median/means.
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Other notions of stability

I Additive perturbation resilience proposed by Ackerman and
Ben-David (2009).

I (c, ϵ)-approximation stability by Balcan-Blum-Gupta (2013),
i.e., every c-approximation to the optimal cost is ϵ-close (in
normalized set difference) to the optimal partition.

I Balcan-Liang (2016) showed that (c, ϵ)-approximation stability
implies (c, ϵ)-perturbation resilience.

I ϵ-additive perturbation resilience by Vijayaraghavan et al.
(2017), where points move by at most ϵmaxij ∥µi − µj∥.

I Kumar-Kannan (2010), Awasthi-Sheffet (2012), ...
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The (Euclidean) k-means problem

Given a set X ⊆ Rd of n data points and an integer k > 0, the
k-means clustering objective is to find k centers c1, c2, . . . , ck ∈ Rd

that minimize

ϕ(c1, c2, . . . , ck) =
k∑

j=1

∑
x∈Cj

∥x − cj∥2 ,

where Cj is the cluster of points that have cj as their nearest center.

NP-hard even for k = 2 (Aloise et al. and Dasgupta-Freund, 2009)
or d = 2 (Mahajan et al., 2009).

For this talk, let’s call it discrete k-means if we optimize only over
C ⊆ X or some pre-specified discrete set as part of the input.
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Center-proximity

For α > 1, the clustering by c1, c2, . . . , ck satisfies
α-center-proximity if

α d(x, ci) ≤ d(x, cj), for x ∈ Ci and i ̸= j.

That is, every point is closer by a multiplicative factor of α to its
nearest center than to its second nearest center.

α-metric-perturbation-resilience implies α-center-proximity.

Center-proximity used as a proxy for metric perturbation-resilience
indirectly in most previous results. Balcan-Liang (2016) exploit
that the optimal clusters of (1 +

√
2)-stable instances are

contained in disjoint balls. Vijayaraghavan et al. (2017) use
angular separation between optimal clusters for perceptron.
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Center-proximity

For α > 1, the clustering by c1, c2, . . . , ck satisfies
α-center-proximity if

α d(x, ci) ≤ d(x, cj), for x ∈ Ci and i ̸= j.

That is, every point is closer by a multiplicative factor of α to its
nearest center than to its second nearest center.

α-metric-perturbation-resilience implies α-center-proximity.

Center-proximity used as a proxy for metric perturbation-resilience
indirectly in most previous results. Balcan-Liang (2016) exploit
that the optimal clusters of (1 +

√
2)-stable instances are

contained in disjoint balls. Vijayaraghavan et al. (2017) use
angular separation between optimal clusters for perceptron.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Why center-proximity?

I We do not know how to test if a given clustering instance is
stable or perturbation-resilient.

I Underlying ground-truth clustering need not be optimal for
our k-center/median/means objective.

I α much larger than 1 is good in theory but impractical.

I For any given c1, c2, . . . , ck centers, we can easily check if
their corresponding clusters satisfy α-center proximity.
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Clustering objective, revisited

Given a set X ⊆ Rd of n data points and an integer k > 0 and a
parameter α > 1, find k centers c1, c2, . . . , ck ∈ Rd that minimize

ϕ(c1, c2, . . . , ck) =
k∑

j=1

∑
x∈Cj

∥x − cj∥2 ,

where Cj is the cluster of points that have cj as their nearest center
and the clusters satisfy α-center-proximity.

In other words, minimize the cost only over clusterings or partitions
that have additional desirable properties as the ground-truth.
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Our results

Joint work with Anand Louis and Apoorv Vikram Singh (IISc), to
appear at AISTATS’19. https://arxiv.org/abs/1804.10827

I Exact algorithm to find α-center-proximal (balanced)
clustering of the least k-means cost, in time exponential in k
and 1/(α− 1) but linear in the number of points n and the
dimension d.

I Similar guarantees for k-means with outliers.

I Given any α > 1, there exists α ≥ β > 1 and ϵ > 0 such that
it is NP-hard to (1 + ϵ)-approximate the minimum of k-means
objective over β-center-proximal (even balanced) clusterings.

https://arxiv.org/abs/1804.10827


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Geometric insight
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Related work, open problems

I Friggstad-Khodamoradi-Salavatipour (SODA’2019) show
exact (local-search) algorithms for α-stable instances of
k-means in doubling metrics in poly time.
Caveat: works for only small or constant d.
https://arxiv.org/abs/1807.05443.

I Are instances where most points satisfy α-center-proximity
also easy?

I Any other reasonable notions of stability?

I How/why do practical heuristics work on practical instances?

https://arxiv.org/abs/1807.05443
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Thank you. Any questions?


