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Overview

• Plan of the talk

• Why Space efficient?
• What we mean by efficient? (information theory lower bound)
• How Some examples

(a binary (or d-ary) vector, subset of a finite universe)
• Success Story BWT and FM index

• A recent book
• Compact Data Structures: A Practical Approach, Gonzalo

Navarro, Cambridge UP, 2016.
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Data Structures

• Pre-process input data so as to answer (long) series of
retrieval or update operations.

• Want to minimize:

1. Query/Update time.
2. Space usage of data structure.
3. Time of pre-processing.
4. Space for pre-processing.

• In this talk we will worry only about the first two, and our
data structures are static.
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Space usage of Data Structures

Answering queries on data requires an index in addition to the
data. Index may be much larger than the data. E.g.:

• Range Trees: data structure for answering 2-D orthogonal
range queries on n points.

• Good worst-case performance but Θ(n log n) words of space.

• Suffix Trees: data structure for indexing a sequence T of n
symbols from an alphabet of size σ.

• Supports very complex queries on string patterns quickly but
uses Θ(n) words of space.

• One word must have at least log2 n bits.
• Θ(n) words is Ω(n log n) bits – raw sequence T is n log2 σ bits.
• A good implementation takes 10x to 30x space more than T .
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Succinct/Compressed Data Structures

Space usage = “space for data” + “space for index”︸ ︷︷ ︸
redundancy

.

• Redundancy (working space used by data structure to answer
queries) should be small.

Ideally o(inputsize).

• What should be the space for the data?
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Why care about space?

• While the cost of memory continues to go down, the growth
of data is increasing at a much higher rate. (E.g. Search
Engines, Genome data)

• Space is important if we want to pack a lot of data into
handheld devices.

• Sometimes, better space usage increases the amount of data
that can be stored in main memory, thereby increasing time
efficiency too.
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Models of Computation

• Computational model:
• Unit-cost RAM with word size Θ(log n) bits.

• Operations on O(log n) bit operands (addition, subtraction,
OR, multiplication, ..) in O(1) time.

• Space counted in terms of bits.

• There are also other models like Cell-probe model with word
size Θ(log n) bits (normally used for lower bounds).
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If an object x is chosen from a set S then in the worst case we
need log2 |S | bits to represent x .
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“Space for Data”

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we
need log2 |S | bits to represent x .

• x is a permutation over {1, . . . , n}.
• S is the set of all permutations over {1, . . . , n}.
• log2 |S | = log2 n! = n log2 n − n log2 e + o(n) bits.

Note that the standard way to represent a permutation takes n dlg ne
bits.
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“Space for Data”

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we
need log2 |S | bits to represent x .

• x is a binary string of length n with m 1s.

• S is the set of all binary strings of length n with m 1s.

• log2 |S | = log2

(n
m

)
= m log2(n/m) + O(m) bits.

• E.g. if m = O(n/ log n) then the lower bound is
O(m log log n) = o(n) bits.

• if we just write down the positions of the 1’s, that is m dlog2 ne
bits
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“Space for Data”

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we
need log2 |S | bits to represent x .
• x is a binary tree of n nodes.

• S is the set of all binary trees of n
nodes.

• log2 |S | = log2
1

n+1

(2n
n

)
= 2n − O(log n)

bits

Note that the standard binary tree representation uses Θ(1) pointers
per node, or Θ(n) pointers; each pointer is an address needing log n
bits, so totally Θ(n log n) bits, log n times more than necessary.
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“Space for Data”

Definition (Information-theoretic Lower Bound)

If an object x is chosen from a set S then in the worst case we
need log2 |S | bits to represent x .

• x is a triangulated planar graph of n nodes.

• S is the set of all triangulated planar graphs with n nodes.

• log2 |S | ∼ 3.24n bits.

There are also bounds for general graphs, chordal graphs, bounded
treewidth graphs.
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Succinct Data Structures

Aim is to store using space:

Space usage = “space for data” + “space for index”︸ ︷︷ ︸
lower-order term

.

and perform operations directly on it.

• For static DS, often get O(1) time operations.

• Representation often tightly tied to set of operations.

• They work in practice!



Introduction Data Structures Libraries Conclusions

Bit Vectors

Data: Sequence X of n bits, x1, . . . , xn.

ITLB: n bits; total space n + o(n) bits.

Operations:

• rank1(i): number of 1s in x1, . . . , xi .

• select1(i): position of ith 1.

Also rank0, select0. Ideally all in O(1) time.

Example: X = 01101001, rank1(4) = 2, select0(4) = 7.

Operations introduced in [Elias, J. ACM ’75 ], [Tarjan and Yao, C.
ACM ’78 ], [Chazelle, SIAM J. Comput ’85 ], [Jacobson, FOCS ’89 ].
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Bit Vectors: Implementing rank1
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• Naive solution: store answer to all rank1 queries. Space:
O(n log n) bits.

• Sample: store answer only to every (log n)/2-th rank1 queries.
Space: O(n) bits.

• How to support rank1 in O(1) time?
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Bit-Vectors: Implementing rank1

1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 101 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

6
5

7

6
6

1

6
6

4

6
6

8

 n(log   )/2 

• Scanning the (log n)/2 block takes O(log n) time.
• We will use what is called the “Four Russians trick”.
• Let k = (log n)/2. Create a table A with

2k+log2 k = O(
√
n log n) = o(n) entries.

• A[y1 . . . ylog2 kx1 . . . xk ] = number of 1s in x1 . . . xy+1 where
y = y1 . . . ylog2 k . (The “four Russians” trick.)

• rank1(x) = 657 + A[10111010011]︸ ︷︷ ︸
3

.

• O(n) bits, O(1) time.
• Many theoretical SDS: decompose + sample + table lookup.
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3

.

• O(n) bits, O(1) time.
• Many theoretical SDS: decompose + sample + table lookup.
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Bit-Vectors: Implementing rank1

Improve redundancy by two-level approach.

• Store answer for every log2 n positions. This takes only
O(n log n/ log2 n = n/ log n) = o(n) bits.

• Then for every (log n)/2 positions, store answer within the
block. This takes O(n(log log n)/ log n) = o(n) bits.

• Then store, as before, a table to find answers within (log n)/2
positions.
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Bit-Vectors: Implementing rank1 Two-level approach

log nt *log n bits

log log n bits

4

1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

657

85 3

0.5 * log n

Space = n + O

(
n

t lg n
· lg n +

n

lg n
· lg lg n

)
+ O(

√
n · lg n)

= n + O(n log log n/ log n) bits: choose t = Θ(log n/ log log n).

• Redundancy O(n lg lg n/ lg n) bits, optimal for O(1) time
operations [Golynski, TCS’07 ].

• Supporting select1 is similar, though a bit complicated.
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Bit-Vectors: Implementing select1; the idea

• We will try to manage by using extra O(n/ log log n) bits.

• Store answer for every lg n(lg lg n)th 1, takes space n/ lg lgn
bits.

• If the range r between two consecutive answers stored is of
size more than (lg n lg lg n)2, store the positions of all the
lg n(lg lg n) 1 in the range; takes (lg n)2(lg lg n) bits, which is
at most r/ lg lg n.

• Otherwise recurse. After a couple of levels, the range will be
small enough (O((lg lg n)4)) that a table look up can
complete the job.
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Wavelet Tree – Representing strings from a larger alphabet

Data: Sequence S [1..n] of symbols from an alphabet of size σ.
Operations:

rank(c , i): number of c ’s in S [1..i ].
select(c , i): position of i-th c .
access(i): return S [i ].

 in O(log σ) time.

Store log2 σ BVs: n log σ︸ ︷︷ ︸
raw size

+o(n log σ) bits [Grossi, Vitter, SJC ’05 ].

4 3 0 5 3 2 3 2 6 3 1 1

1 0 0 1 0 0 0 0 1 0 0 0

4 3 0 5 3 2 3 2 6 3 1 1

0 1 2

0 0 11 0 1 1 1 1 1 0 0

3 0 3 2 3 2 3 1 1

0

1 1 0 1 0 1

1 1 0 1 0 10 1 1

0 1 1

0 1

0 1 0
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A Bit vector with only m 1s

Data: Sequence X of n bits,
x1, . . . , xn with m 1s.

Data: Set X = {x1, . . . , xm} ⊆
{1, . . . , n}, x1 < x2 < . . . < xm.

Operations:

• select1(i).

Operations:

• access(i) : return xi .

ITLB: log2

(n
m

)
= m log2(n/m) + O(m) bits.

[Elias, J. ACM’75 ], [Grossi/Vitter, SICOMP’06 ], [Raman et al.,
TALG’07 ].
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Elias-Fano Representation

Bucket according to most significant b bits.

Example. b = 3, dlog2 ne = 5,m = 7.

x1 0 1 0 0 0
x2 0 1 0 0 1
x3 0 1 0 1 1
x4 0 1 1 0 1
x5 1 0 0 0 0
x6 1 0 0 1 0
x7 1 0 1 1 1

Bucket Keys

000 −
001 −
010 x1, x2, x3

011 x4

100 x5, x6

101 x7

110 −
111 −
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Elias-Fano

B Store only low-order bits.
B Keep sizes of all buckets.

Example
select(6)

bkt sz data
000 0 −
001 0 −
010 3 00︸︷︷︸

x1

, 01︸︷︷︸
x2

, 11︸︷︷︸
x3

,

011 1 01︸︷︷︸
x4

100 2 00︸︷︷︸
x5

, 10︸︷︷︸
x6

101 1 11︸︷︷︸
x7

110 0 −
111 0 −



Introduction Data Structures Libraries Conclusions

Elias-Fano

• Choose b = blog2 mc bits. In bucket: dlog2 ne − blog2 mc-bit
keys.

• m log2 n −m log2 m + O(m) = m log2(n/m) + O(m) bits for
lower part.

Encoding Bucket Sizes

Bucket no: 000 001 010 011 100 101 110 111
Bucket size: 0 0 3 1 2 1 0 0

• Use a unary encoding: 0, 0, 3, 1, 2, 1, 0, 0→ 110001010010111.
• z buckets, total size m ⇒ m + z = O(m) bits (z = 2blog2 mc).

• Overall space of E-F bit-vector is m log(n/m) + O(m) bits.
• In which bucket is the 6th key? B“rank1 of 6th 0”.

• select1 in O(1) time.
• Redundancy can be made o(m) and membership and Rankone

can also be supported (RRR01)



Introduction Data Structures Libraries Conclusions

Elias-Fano

• Choose b = blog2 mc bits. In bucket: dlog2 ne − blog2 mc-bit
keys.

• m log2 n −m log2 m + O(m) = m log2(n/m) + O(m) bits for
lower part.

Encoding Bucket Sizes

Bucket no: 000 001 010 011 100 101 110 111
Bucket size: 0 0 3 1 2 1 0 0

• Use a unary encoding: 0, 0, 3, 1, 2, 1, 0, 0→ 110001010010111.
• z buckets, total size m ⇒ m + z = O(m) bits (z = 2blog2 mc).

• Overall space of E-F bit-vector is m log(n/m) + O(m) bits.
• In which bucket is the 6th key? B“rank1 of 6th 0”.

• select1 in O(1) time.
• Redundancy can be made o(m) and membership and Rankone

can also be supported (RRR01)



Introduction Data Structures Libraries Conclusions

Elias-Fano

• Choose b = blog2 mc bits. In bucket: dlog2 ne − blog2 mc-bit
keys.

• m log2 n −m log2 m + O(m) = m log2(n/m) + O(m) bits for
lower part.

Encoding Bucket Sizes

Bucket no: 000 001 010 011 100 101 110 111
Bucket size: 0 0 3 1 2 1 0 0

• Use a unary encoding: 0, 0, 3, 1, 2, 1, 0, 0→ 110001010010111.
• z buckets, total size m ⇒ m + z = O(m) bits (z = 2blog2 mc).

• Overall space of E-F bit-vector is m log(n/m) + O(m) bits.
• In which bucket is the 6th key? B“rank1 of 6th 0”.

• select1 in O(1) time.
• Redundancy can be made o(m) and membership and Rankone

can also be supported (RRR01)



Introduction Data Structures Libraries Conclusions

Elias-Fano

• Choose b = blog2 mc bits. In bucket: dlog2 ne − blog2 mc-bit
keys.

• m log2 n −m log2 m + O(m) = m log2(n/m) + O(m) bits for
lower part.

Encoding Bucket Sizes

Bucket no: 000 001 010 011 100 101 110 111
Bucket size: 0 0 3 1 2 1 0 0

• Use a unary encoding: 0, 0, 3, 1, 2, 1, 0, 0→ 110001010010111.

• z buckets, total size m ⇒ m + z = O(m) bits (z = 2blog2 mc).
• Overall space of E-F bit-vector is m log(n/m) + O(m) bits.

• In which bucket is the 6th key? B“rank1 of 6th 0”.
• select1 in O(1) time.
• Redundancy can be made o(m) and membership and Rankone

can also be supported (RRR01)



Introduction Data Structures Libraries Conclusions

Elias-Fano

• Choose b = blog2 mc bits. In bucket: dlog2 ne − blog2 mc-bit
keys.

• m log2 n −m log2 m + O(m) = m log2(n/m) + O(m) bits for
lower part.

Encoding Bucket Sizes

Bucket no: 000 001 010 011 100 101 110 111
Bucket size: 0 0 3 1 2 1 0 0

• Use a unary encoding: 0, 0, 3, 1, 2, 1, 0, 0→ 110001010010111.
• z buckets, total size m ⇒ m + z = O(m) bits (z = 2blog2 mc).

• Overall space of E-F bit-vector is m log(n/m) + O(m) bits.
• In which bucket is the 6th key? B“rank1 of 6th 0”.

• select1 in O(1) time.

• Redundancy can be made o(m) and membership and Rankone
can also be supported (RRR01)



Introduction Data Structures Libraries Conclusions

Elias-Fano

• Choose b = blog2 mc bits. In bucket: dlog2 ne − blog2 mc-bit
keys.

• m log2 n −m log2 m + O(m) = m log2(n/m) + O(m) bits for
lower part.

Encoding Bucket Sizes

Bucket no: 000 001 010 011 100 101 110 111
Bucket size: 0 0 3 1 2 1 0 0

• Use a unary encoding: 0, 0, 3, 1, 2, 1, 0, 0→ 110001010010111.
• z buckets, total size m ⇒ m + z = O(m) bits (z = 2blog2 mc).

• Overall space of E-F bit-vector is m log(n/m) + O(m) bits.
• In which bucket is the 6th key? B“rank1 of 6th 0”.

• select1 in O(1) time.
• Redundancy can be made o(m) and membership and Rankone

can also be supported (RRR01)



Introduction Data Structures Libraries Conclusions

Tree Representations

Data: n-node binary tree.
Operations: Navigation (left child, right child, parent).

• Visit nodes in level-order and output 1 if internal node and 0
if external (2n + 1 bits) [Jacobson, FOCS ’89 ]. Store
sequence of bits as bit vector.

0 1

0 0

1 0

1

1

1

1

0 0 1

1

0

00

1 1 1 1 0 1 0 1 0 0 1 0 0 0 0 01

• Number internal nodes by position of 1 in bit-string
• Left child = 2 ∗ rank1(i). E.g. Left child of node 7 = 7 * 2 =

14. Right child = 2 ∗ rank1(i) + 1. parent = select1(bi/2c).
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Tree Representations

• ”Optimal” representations of many kinds of trees e.g. ordinal
trees (rooted arbitrary degree (un-)labelled trees, e.g. XML
documents), tries.

• Wide range of O(1)-time operations, e.g.:
• ordinal trees in 2n + o(n) bits [Navarro, Sadakane, TALG’12 ].
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Tree Representations

• Trees show some of the strengths and weaknesses of SDS.
• Good functionality at low space cost.
• Strange limitations on functionality:
• Why not index nodes in BFS order?

• Binary tree representation can index in BFS order, but not in
pre-post order.

• Usually not possible to use two different tree representations
for the same data.
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Pattern Matching – Compressed Text Indexing

Data: Sequence T (”text”) of m symbols from alphabet of size σ.
ITLB: n log2 σ bits.
Operation: Given pattern P, determine if P occurs (exactly) in T
(and report the number of occurrences, starting positions etc).

• For a human genome sequence, m is about 3 billion (3x109)
characters, and σ = 4.

• Standard data structure is suffix tree, which answers this
query in O(|P|) time but takes O(n log n) bits of space.

• In practice, a ST is about 10-30 times larger than the text.

• A number of SDS have been developed: we’ll focus on the
FM-Index [Ferragina, Manzini, JACM ’05 ].
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Previous Popular Solution – Suffix Trees

• A (compressed) trie containing all the suffixes of T . The tree
contains m + 1 leaves and at most m other nodes.

• Each leaf is labelled with the starting position of the suffix
ending at that leaf.

• Each edge has a string, that can be represented by the
starting and ending position of the substring in the text.

• Overall, naive implementation takes about 4n words or 4n lg n
bits.

• Progress in succinct data structures has brought the space
down to m lgm + O(m) bits (in addition to the text).

• P exists in T if and only if P is a prefix of a suffix of T . So,
follow from the root matching P. If success, the leaves in the
entire subtree gives the list of occurrences.

• O(n + occ) to find all occurrences



Suffix trie: making it smaller

Idea 1: Coalesce non-branching paths 
into a single edge with a string label

aba$

Reduces # nodes, edges,
guarantees internal nodes have >1 child

$

T = abaaba$



Suffix tree

How many leaves?
ba

aba$
$

$a

$

aba$

ba

$

aba$

m

How many non-leaf nodes? ≤ m - 1

≤ 2m -1 nodes total, or O(m) nodes

T = abaaba$

Is the total size O(m) now? No: total length of edge 
labels is quadratic in m

With respect to m:



Suffix tree

ba

aba$
$

$a

$

aba$

ba

$

aba$

T = abaaba$ Idea 2: Store T itself in addition to the tree.  Convert tree’s 
edge labels to (offset, length) pairs with respect to T.

(1, 2)

(3, 4)
(6, 1)

(6, 1)
(0, 1)

(1, 2)

T = abaaba$

(3, 4)

(3, 4)

(6, 1)

(6, 1)

Space required for suffix tree is now O(m)



Suffix tree: leaves hold offsets

(1, 2)

(3, 4)
(6, 1)

(6, 1)
(0, 1)

(1, 2)

T = abaaba$

(3, 4)

(3, 4)

(6, 1)

(6, 1)

(1, 2)

(3, 4)
(6, 1)

(6, 1)
(0, 1)

(1, 2)

T = abaaba$

(3, 4)

(3, 4)

(6, 1)

(6, 1)

0

3
2

5
4

1

6
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Previous popular solution - Suffix Arrays

• A permutation of {1, 2, . . .m}. S [i ] is the starting position of
the i-th suffix in the lexicographic order.

• Takes m lgm bits. Naive binary search takes O(n lgm) time.

• With what is called an LCP array taking another m lgm bits,
the search time can be brought down to O(n + lgm) bits.



Suffix array

T$ = abaaba$

SA(T) = 

m + 1 
integers 

As with suffix tree, 
T is part of index

(SA = “Suffix Array”)
$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

6
5
2
3
0
4
1

Suffix array of T is an array of integers in [0, m] specifying the 
lexicographic order of T$’s suffixes



Suffix array: querying

Is P a substring of T?

6

5

2

3

0

4

1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

1. For P to be a substring, it must 
be a pre"x of ≥1 of T’s suffixes

2. Suffixes sharing a pre"x are 
consecutive in the suffix array

Use binary search



Suffix array: querying

Is P a substring of T?

6

5

2

3

0

4

1

$

a $

a a b a $

a b a $

b a $

b a a b a $

a b a a b a $

Do binary search, check whether P is a 
pre"x of the suffix there

How many times does P occur in T?

Worst-case time bound?

O(log2 m) bisections, O(n) comparisons 
per bisection, so O(n log m)

Two binary searches yield the range of 
suffixes with P as pre"x; size of range 
equals # times P occurs in T
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The FM-Index

Based on the Burrows-Wheeler transform of the text T .
Example: T = missisippi

F

L

i m i s s i s s i p p
i p p i m i s s i s s
i s s i p p i m i s s
i s s i s s i p p i m

m i s s i s s i p p i
p i m i s s i s s i p
p p i m i s s i s s i
s i p p i m i s s i s
s i s s i p p i m i s
s s i p p i m i s s i
s s i s s i p p i m i

BWT(T ) = pssmipissii
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Burrows-Wheeler Transform

Text transform that is useful for compression & search.

banana$
anana$b
nana$ba
ana$ban
na$bana
a$banan
$banana

banana
$banana
a$banan
ana$ban
anana$b
banana$
nana$ba
na$bana

BWT(banana) = 
annb$aa 

Tends to put runs of the 
same character together.

Makes compression 
work well.

“bzip” is based on this.

sort



Burrows-Wheeler Transform

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

a b a a b a $
T All rotations

Sort

a bb a $ a a
BWT(T)

Last column

Burrows-Wheeler 
Matrix

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm. 
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Reversible permutation of the characters of a string, used originally for compression

How is it reversible?How is it useful for compression? How is it an index?



Burrows-Wheeler Transform

BWM bears a resemblance to the suffix array

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

6 $
5 a $
2 a a b a $
3 a b a $
0 a b a a b a $
4 b a $
1 b a a b a $

Sort order is the same whether rows are rotations or suffixes

BWM(T) SA(T)



Burrows-Wheeler Transform

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

a b a a b a $
T All rotations

Sort

a bb a $ a a
BWT(T)

Last column

Burrows-Wheeler 
Matrix

How to reverse the BWT?

BWM has a key property called the LF Mapping...

?



Burrows-Wheeler Transform: T-ranking

a b a a b a $

Give each character in T a rank, equal to # times the character occurred 
previously in T.  Call this the T-ranking.

a0 b0 a1 a2 b1 a3

Now let’s re-write the BWM including ranks...



Burrows-Wheeler Transform

BWM with T-ranking: $ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1
a1 a2 b1 a3 $ a0 b0
a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

Look at first and last columns, called F and L

F L

And look at just the as

as occur in the same order in F and L.  As we look down columns, in both 

cases we see:   a3, a1, a2, a0



Burrows-Wheeler Transform

BWM with T-ranking: $ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1
a1 a2 b1 a3 $ a0 b0
a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

F L

Same with bs:   b1, b0



Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking: $ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1
a1 a2 b1 a3 $ a0 b0
a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

F L

LF Mapping: The ith occurrence of a character c in L and the ith occurrence of c 
in F correspond to the same occurrence in T

However we rank occurrences of c, ranks appear in the same order in F and L



Burrows-Wheeler Transform: LF Mapping

$ a b a a b a3
a3 $ a b a a b1
a1 a b a $ a b0
a2 b a $ a b a1
a0 b a a b a $
b1 a $ a b a a2
b0 a a b a $ a0

Why does the LF Mapping hold?

Why are these 
as in this order 
relative to 
each other?

They’re sorted by 
right-context

$ a b a a b a3
a3 $ a b a a b1
a1 a b a $ a b0
a2 b a $ a b a1
a0 b a a b a $
b1 a $ a b a a2
b0 a a b a $ a0

Why are these 
as in this order 
relative to 
each other?

They’re sorted by 
right-context

Occurrences of c in F are sorted by right-context.  Same for L!

Whatever ranking we give to characters in T, rank orders in F and L will match



Burrows-Wheeler Transform: LF Mapping

BWM with T-ranking:

$ a0 b0 a1 a2 b1 a3
a3 $ a0 b0 a1 a2 b1
a1 a2 b1 a3 $ a0 b0
a2 b1 a3 $ a0 b0 a1
a0 b0 a1 a2 b1 a3 $
b1 a3 $ a0 b0 a1 a2
b0 a1 a2 b1 a3 $ a0

F L

We’d like a different ranking so that for a given character, ranks are in 
ascending order as we look down the F / L columns...



Burrows-Wheeler Transform: LF Mapping

BWM with B-ranking:

$ a3 b1 a1 a2 b0 a0
a0 $ a3 b1 a1 a2 b0
a1 a2 b0 a3 $ a3 b1
a2 b0 a0 $ a3 b1 a1
a3 b1 a1 a2 b0 a0 $
b0 a0 $ a3 b1 a1 a2
b1 a1 a2 b0 a0 $ a3

F L

Ascending rank

F now has very simple structure: a $, a block of as with ascending ranks, a 
block of bs with ascending ranks



Burrows-Wheeler Transform

a0

b0

b1

a1

$
a2

a3

L

Which BWM row begins with b1?

Skip row starting with $ (1 row)
Skip rows starting with a (4 rows)
Skip row starting with b0 (1 row)

$
a0

a1

a2

a3

b0

b1

F

row 6
Answer: row 6



Burrows-Wheeler Transform

Say T has 300 As, 400 Cs, 250 Gs and 700 Ts and $ < A < C < G < T

Skip row starting with $ (1 row)
Skip rows starting with A (300 rows)
Skip rows starting with C (400 rows)
Skip first 100 rows starting with G (100 rows)

Answer: row 1 + 300 + 400 + 100 = row 801

Which BWM row (0-based) begins with G100?  (Ranks are B-ranks.)



Burrows-Wheeler Transform: reversing
Reverse BWT(T) starting at right-hand-side of T and moving left

F L

a0

b0

b1

a1

$

a2

a3

$

a0

a1

a2

a3

b0

b1

Start in first row. F must have $.  L contains 
character just prior to $:  a0

a0: LF Mapping says this is same occurrence of a 

as first a in F.  Jump to row beginning with a0.  L 

contains character just prior to a0: b0.

Repeat for b0, get a2

Repeat for a2, get a1

Repeat for a1, get b1

Repeat for b1, get a3

Repeat for a3, get $, done Reverse of chars we visited = a3 b1 a1 a2 b0 a0 $ = T



Burrows-Wheeler Transform: reversing
Another way to visualize reversing BWT(T):

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

F L
a0

b0

b1

a1

$
a2

a3

$
a0

a1

a2

a3

b0

b1

a3 b1 a1 a2 b0 a0 $T:



We’ve seen how BWT is useful for compression:

And how it’s reversible:

Sorts characters by right-context, making a more compressible string

Repeated applications of LF Mapping, recreating T from right to left

How is it used as an index?

Burrows-Wheeler Transform



FM Index

FM Index: an index combining the BWT with a few small auxilliary 
data structures

“FM” supposedly stands for “Full-text Minute-space.” 
(But inventors are named Ferragina and Manzini)

Core of index consists of F and L from BWM:
$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a
Not stored in index

F L

Paolo Ferragina, and Giovanni Manzini. "Opportunistic data 
structures with applications." Foundations of Computer Science, 
2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

F can be represented very simply 
(1 integer per alphabet character)

And L is compressible

Potentially very space-economical!



FM Index: querying

Though BWM is related to suffix array, we can’t query it the same way

$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

6 $
5 a $
2 a a b a $
3 a b a $
0 a b a a b a $
4 b a $
1 b a a b a $

We don’t have these columns; binary search isn’t possible



FM Index: querying

Look for range of rows of BWM(T) with P as prefix

$ a b a a b a3
a0 $ a b a a b1
a1 a b a $ a b0
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a0

F L

P = aba

Easy to find all the 
rows beginning with 
a, thanks to F’s 
simple structure

Do this for P’s shortest suffix, then extend to successively longer 
suffixes until range becomes empty or we’ve exhausted P

aba



FM Index: querying

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = abaaba

We have rows beginning with a, now we seek rows beginning with ba

Look at those rows in L.

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = aba

Use LF Mapping.  Let new 
range delimit those bs

Now we have the rows with prefix ba

b0, b1 are bs occuring just to left.



FM Index: querying

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = abaaba

We have rows beginning with ba, now we seek rows beginning with aba

Use LF Mapping

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = aba

a2, a3 occur just to left.

Now we have the rows with prefix aba



FM Index: querying

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = aba Now we have the same range, [3, 5), we would 
have got from querying suffix array

[3, 5)

Unlike suffix array, we don’t immediately know where the 
matches are in T...

6 $
5 a $
2 a a b a $
3 a b a $
0 a b a a b a $
4 b a $
1 b a a b a $

[3, 5)

Where are 
these?



FM Index: querying

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

F L

P = ababba

When P does not occur in T, we will eventually fail to find the next character 
in L:

No bs!Rows with ba prefix



FM Index: querying

If we scan characters in the last column, that can be very slow, O(m)

$ a b a a b a3
a0 $ a b a a b1
a1 a b a $ a b0
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a0

F L

P = aba

Scan, looking for bs 

aba



FM Index: lingering issues

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

(1)

(2)
def;reverseBwt(bw):
;;;;""";Make;T;from;BWT(T);"""
;;;;ranks,;tots;=;rankBwt(bw)
;;;;first;=;firstCol(tots)
;;;;rowi;=;0
;;;;t;=;"$"
;;;;while;bw[rowi];!=;'$':
;;;;;;;;c;=;bw[rowi]
;;;;;;;;t;=;c;+;t
;;;;;;;;rowi;=;first[c][0];+;ranks[rowi]
;;;;return;t

m 
integers

(3)

O(m) 
scan

Storing ranks takes too much space

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

Need way to find where matches 
occur in T:

Scanning for preceding 
character is slow

Where?



FM Index: resolving offsets

Idea: store some, but not all, entries of the suffix array

6

2

0
4

SA
$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

F L

Lookup for row 4 succeeds - we kept that entry of SA

Lookup for row 3 fails - we discarded that entry of SA

X



FM Index: resolving offsets
But LF Mapping tells us that the a at the end of row 3 corresponds to...

6

2

0
4

SA
$ a b a a b a
a $ a b a a b
a a b a $ a b
a b a $ a b a
a b a a b a $
b a $ a b a a
b a a b a $ a

F L

And row 2 has a suffix array value = 2

...the a at the begining of row 2

So row 3 has suffix array value =      ????3 = 2 (row 2’s SA val) + 1 (# steps to row 2)

If saved SA values are O(1) positions apart in T, resolving offset is O(1) time



FM Index: problems solved

  At the expense of adding some SA values (O(m) integers) to index

(3)

$ a b a a b a0
a0 $ a b a a b0
a1 a b a $ a b1
a2 b a $ a b a1
a3 b a a b a $
b0 a $ a b a a2
b1 a a b a $ a3

Need a way to find where these 
occurrences are in T:

With SA sample we can do this in 
O(1) time per occurrence

Call this the “SA sample”
Solved!



Introduction Data Structures Libraries Conclusions

To Summarize (FM index)

• Existence of P in T , and

• the number of occurrences (occ) of P in T

can be determined in O(n) time using

• m lg σ bits, for BWT (last column)

• o(m lg σ) bits for rank

• σ lgm bits for count of each character (first column)

and the position of all occurrences of P in T can be determined in

• additional O(k occ) time, using

• an additional (m lgm)/k bits of space (using a sampled suffix
array)

• For example, O(occ lgm) time using additional O(m) bits of
space.
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To Summarize (FM index)

• Existence of P in T , and

• the number of occurrences (occ) of P in T

can be determined in O(n) time using

• m lg σ bits, for BWT (last column)

• o(m lg σ) bits for rank

• σ lgm bits for count of each character (first column)

and the position of all occurrences of P in T can be determined in

• additional O(k occ) time, using

• an additional (m lgm)/k bits of space (using a sampled suffix
array)

• For example, O(occ lgm) time using additional O(m) bits of
space.
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Contrasting with Suffix Arrays and Suffix Trees

FM O(m lg σ) bits O(n) time for
Index 1.5GB for finding existence and occ

human genome O(n + occ lgm) for finding
all occurrences

Suffix 2m lgm bits + text O(n + lgm) time for
Array about 12GB for all operations

human genome

Suffix 3m lgm bits + text O(n) time for
Tree about 47GB in MUMmer boolean query

for human genome; O(n + occ) for finding
with optimization all occurrences
(m lgm + O(m) bits) useful for many other

operations
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Libraries

• A number of good implementations of succinct data
structures in C++ are available.

• Different platforms, coding styles:

• sdsl-lite (Gog, Petri et al. U. Melbourne).
• succinct (Grossi and Ottaviano, U. Pisa).
• Sux4J (Vigna, U. Milan, Java).
• LIBCDS (Claude and Navarro, Akori and U. Chile).

• All open-source and available as Git repositories.
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Conclusions

• SDS are a relatively mature field in terms of breadth of
problems considered.

• Quite practical; FM index has been implemented in BIO
software (Bowtie).

• Some foundational questions still not addressed (e.g. lower
bounds). at least in dynamic SDS.
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Thank You

Special thanks to Rajeev Raman (Leicester University) and
Ben Langmead (Johns Hopkins) for some of the slides
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