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~ Given a graph G and an integer k, an independent set covering Famlly |
(ISCF) for (G,k) is a family of independent sets of G, say 7 (G,k), such that §

f . for any independent set X of G of size at most k, there exists Y ¢ 7 (G,k), |

such that X c Y.
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Can the dependence of k be removed ?
n edges from the exponent on n? o




Tool 1
{ Independent Set Covering Lemma (ISCL)

,

. If G is d-degenerate, then for any k, there is an ISCF for (G,k) of size
§ 20(k log kd) |oq .

13

. In fact, such a family can be found in 2O(k log kd) (n+m). log n time.

S



Towards Randomized Independent Set Covering Lemma

’.' Given: A d-degenerate graph G, an integer k
§ Output: An independent set Y such that

| for any independent set X of size at most k, the Pr(x C v)> 1 §
,\ 2k(d+1) §

j For each vertex v € V(G), colour it either red or blue, uniformly%




Towards Randomized Independent Set Covering Lemma

’.' Given: A d-degenerate graph G, an integer k
§ Output: An independent set Y such that

| for any independent set X of size at most k, the Pr(x C v)> 1 §
,\ 2k(d+1) §

j For each vertex v € V(G), colour it either red or blue, uniformly%

—_
Graph G - Q< e




RED = set of all vertices that are coloured red
BLUE = set of all vertices that are coloured blue

GOOD EVENT = RED contains all vertices of X and none of its forward
neighbours (i.e. all the forward neighbours of X are in BLUE)

IND_RED= {v: v ¢ RED and all its forward neighbours in BLUE}

Claim : If GOOD EVENT happens, then

Pr(GOOD EVENT)



Towards Randomized Independent Set Covering Lemma

’.' Given: A d-degenerate graph G, an integer k
Z g § Output: An independent set Y such that

 for any independent set X of size at most k, the Pr(X C Y)> |
/‘ ok(d+1) §

jFor each vertex v € V(G), colour it either red or blue, uniformly "»

§at random.



Towards Randomized Independent Set Covering Lemma

’.' Given: A d-degenerate graph G, an integer k
Z g § Output: An independent set Y such that

| for any independent set X of size at most k, the Pr(x C v)>".1
| ok (d+d) :-

§For each vertex v € V(G), colour it either red or blue, uniformly§

color v red with probability

color v blue with probability



Randomized Independent Set Covering Lemma

»f Given: A d-degenerate graph G, an integer k
| Output: An independent set Y such that

for any independent set X of size at most k, the Pr(X C Y)> 1
! 20 (klog kd) '.

There is an algorithm that given a d-degenerate graph G and an ‘
integer k, outputs a family 7(G,k) such that:
e 7(G,k) is an ISCF for (G,k) with probability at least 1- 1/n,

® |LC%—(G,|()| < 2O(k log kd) lOg n ‘
¢ Running time of the algorithm is O(|7(G,k)l . (n+m)). ’




Deterministic Independent Set Covering Lemma

(n,l,q)-perfect hash family, (q 2 I)

Ul = n
Family of functions {fy,...,f+}

fi : U ->[q)
For each S € U, Is| £ |,

there exists some f; such that f; is injective on S
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Deterministic Independent Set Covering Lemma
(n,l,q)-perfect hash family

Ul = n
Family of functions {f;,...,f}
Fi : U -> [q]
For each S € U, |S| £ |,

there exists some f; such that f; is injective on S a (n,l ’ lO(l) )-PerfeCf
hash family of size

Fredman, Komlos, Szemeredi [J. ACM ‘84]

For any n,l,

10(1) log n can be
computed in time

10(1) n log n.




‘ Deterministic Independent Set Covering Lemma (ISCL) g

‘ | There is an algorithm that given a d-degenerate graph G and ang
m'reger k, runs in time 20(k log kd) (n4m) log n, and outputs a n
ISCF for (G k) of size 20(k log kd) |oq n, ~



Applications: Design of
Fixed-Parameter
Tractable Algorithms



Vertex Deletion Problems

‘Inpu’r: A graph G , an integer k ‘}
§ Question: Does there exist a set of at most k vertices, say S, such that G-S{
fhas a property [?

e s-t Separator: I1 is no path from s to t. b

.. r/}

T

e Feedback Vertex Set (FVS): I is a forest.
e Odd Cycle Transversal (OCT): 1 is a bipartite graph.

e Planar Vertex Deletion (PVD): I is a planar graph.




Conflict-free Vertex Deletion Problems

QInpu’r: A graph G, an integer k
" Question: Does there exist a set of at most k vertices, say S, such that G'S

has a property I and S is conflict-free (independent set)? :

e Conflict-free Feedback Vertex Set (FVS)

e Conflict-free Odd Cycle Transversal (OCT)
e Conflict-free Planar Vertex Deletion (PVD)
e Conflict-free s-t Separator

s




"Reusing” algorithms of
vertex deletion problems

to design algorithms for
Conflict-free Vertex
Deletion Problems




FPT Algorithms Conflict-free Vertex
Deletion Problems on d-degenerate
graphs (using ISCL)



| Deterministic Independent Set Covering Lemma (ISCL)

i There is an algorithm that given a d-degenerate graph G and an integer k,

runs in time 20(k log d) (n+m) log n, and outputs an ISCF for (G,k) of size |
| 20(K log d) log n. '
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= Conflict-free s-t Separator on d-degenerate graphs =



: Conflict-free s-t Separator on d-degenerate graphs:

N 0 > g - g s d - gl g - — g - g N il , - >, ?

Inpuf: A graph G, an integer k, vertices s and t ]
{ Question: Does there exist a set S, such that IS| < k, S is an independent set in G|
fand G-S has o path fromstot. ]

o Compute ISCF for (GK), say 7 = {Y;, .. , Y4}, where t = 20(k 1og kd) |55 1 (from

ISCL). Time Taken: 20(k log kd) (n+m) log n

Annofafed s-’r Separa’ror

Inpu’r A graph G an integer Kk, verflces S and ’r Y = V(G)

_  Question: Does there exist a set S, such that |S| < k, § € Y and G-S has no pa’rh

{from s to t. f‘l

(G,k,s,1) > is a YES instance

if and only if
(Gk,s.tYy) (Gks,tY2) (G,k,s,t,Y +)—>one of them is a YES instance



’IIllIllIllllllllllllllllllllll'

'Anno’ra’red s-f Separa’ror:

o o v , s o= L. AP = y -

Inpuf A graph G an mfeger k ver’rlces S and ’r Y & V(G)

‘_'Queshon. Does there exist a set S, such that |S| £ k, S € Y and G-S has no pafh

, From s to t.

Assuqn weughfs ’ro vertices, w(v) =1 |f v ey, o’rherwnse w(v) k+1.

:Welgh’red s-1 Separafor

Y - g S A S LS S

Inpuf A graph G an m’reger k verhces 3 and ’r W V(G) -> N

*Queshon Does there exist a set S, such that |S| < k, w(S) € k and G-S has no
' pa’rh from s to t.

Annotated s-t Separator can be solved in O(k . (n+m)) time.
e

Conflict-free s-t Separator on d-degenerate graphs can be solved in
20(k log kd) (n4+m) log n time.



FPT Algorithms Conflict-free Vertex
Deletion Problems on general

graphs
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EConﬂicf-Free Feedback Vertex Set on general gmphsi

. Compute ISCF for (G[R],k), say &,
Approximate Feedback Vertex set, |

IXI < ¢ k 7| = 20(k log k) log n

(using ISCL)

Compute ISCF for (G[X],k), say 7,

17| = 20(K)
Forest,
R =V(G) \ X (Using Brute force)

F={YUZ : YETF,, ZET} is
an ISCF for G.

O(1

. okOW

|71 log n






Open Problem at Dagstuhl Seminar
Structure Theory and FPT Algorithms for Graphs, Digraphs and Hypergraphs
2007

Almost 2-coloring
Henning Fernau

U. Trier
fernau@uni-trier.de

Is the following problem fixed-parameter tractable? Given a graph G and a parameter k,
determine whether GG has a vertex 3-coloring such that one color class has at most k£ vertices.
In other words, the goal is to remove an independent set of k vertices such that the remaining
graph is bipartite.



Open Problem at Dagstuhl Seminar
Structure Theory and FPT Algorithms for Graphs, Digraphs and Hypergraphs

2007
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Almost 2-coloring
Henning Fernau
U. Trier
fernau@uni-trier.de

Is the following problem fixed-parameter tractable? Given a graph G and a parameter k,
determine whether GG has a vertex 3-coloring such that one color class has at most k£ vertices.
In other words, the goal is to remove an independent set of k vertices such that the remaining
graph is bipartite.

s Conflict-free Odd Cycle Transversal FPT?

#%* Reed, Smith, Vetta : Finding odd cycle transversals.
[Operations Research Letters] (2004)

Is Conflict-free s-t Separator FPT?



Is Conflict-free s-t Separator FPT?

+* Marx, O’Sullivan, Razgon : Finding small separators in linear time via
treewidth reduction. [ACM Trans. Algorithms] (2013)

Yes! ZZKO(I) (n+m)

| Open Problems from Marx et al. f

| O(1)
t1.Is it possible to improve the dependence of k to 2K ? 1
2.Is Conflict-free Multicut FPT2 |

o3+ Lokshtanov, Panolan, Saurabh, S., Zehavi: Covering small independent sets
and separators with applications to parameterized algorithms [SODA] (2018)
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O(1) |

l.Yes! 2 (n+m) log n

3
'2.Yest 2° ’, n3 (n+m)



Overview of Marx et el [TALG 2013] approach

Is Conflict-free s-t Separator FPT?; (Gk,s,1)

1. Treewidth Reduction Step
2. Dynamic Programming on bounded treewidth graph

Treewidth Reduction Step F(k) ( ) +
. \Nn+M) TiMme

(Gk,s,t) ————————————— (G’ Kk;s,1)

preserves all mlnlrf.ml treewidth(G’) = 2
s-t separators of size .
G Is an

at most k

kO(l)

of G

Dynamic Programming on bounded treewidth graph (G’)

O(1)
Time taken: exponential in treewidth = sz (n+m)



Our approach [SODA 2018]
1. Treewidth Reduction Step

sph ISCL

Treewidth Reduction Step f(k). (n+m) time
(Gk,s,t) —————————————— > (G’ k.s,1)

preserves all mmm.\al treewidth(G’) = 2K
s-t separators of size

O(1)

at most K G’ is an
of G
ISCL on (G’,k)
kO(l)

degeneracy(G’) < treewidth(G’) =

Conflict-free s-t Separator on d-degenerate graphs can be solved in 20(k log kd)
(n+m) log n time.

| Conflict-free s-t Separator on general graphs can be solved in '.'l

| o(1 |
M mtegntime.



Conﬂlcf-free Mulhcuf

:Inpu’r A graph G, an m’reger k ’rermmal pairs T-{(sl,’rl) (s P)}»

}" Question: Does there exist a set S, such that |S| < k, S is an independent set in G
’, and, for all |€{l, ,p} there is no pa’rh from i ’ro t; in G-s. |

T3




Tool 2: Degeneracy Reduction Preserving
Minimal Multicuts

ﬁ".? There exists a polynomial time algorithm that given a graph G, a set of |
' terminal pairs T={(sq,t1), ... . (sp,fp)} and an integer k, returns an '
linduced subgraph G’ of G and T’ ¢ T such that: .
t @ Every minimal multicut of T in G of size at most k is a minimal multicut
| o T'in G,
;0 Every minimal multicut of T’ in G’ of size at most k is a minimal .
t multicut of T in G.
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; Degeneracy of G is 20(k), | ]

(G, TK)¢&———»(G', T’ k)




Concluding Remarks

Extensions:
J ISCL for nowhere dense graphs

Barriers:

® ISCL for general graphs

e Induced Matching Covering on 1-degenerate graphs
e Acyclic Subgraphs Covering on 2-degenerate graphs
e r-scattered sets covering on 1-degenerate graphs

e ISCL beyond nowhere dense graphs?
® Covering other families



Thank you!



