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Simultaneous Consecutive Ones Problem 1

Does a given binary matrix have the simultaneous consecutive ones
property (SC1P) ? 


c1 c2 c3 c4 c5

r1 1 0 1 0 1
r2 0 1 0 1 0
r3 1 0 0 1 0
r4 0 0 0 1 0

1
Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B,

12(2):153162, 1972)
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Simultaneous Consecutive Ones Property

Permute the rows and columns so that the ones appear consecutively
in every column and every row.

Permute rows

Permute columns

A matrix having the SC1P
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Simultaneous Consecutive Ones Property

Not all binary matrices have the SC1P.

A matrix not having the SC1P

Testing SC1P - linear time 2

2
K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree

algorithms, Journal of Computer and System Sciences 13 (3) (1976) 335379.
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Characterization of SC1P

A binary matrix M has the SC1P if and only if no submatrix of M is a
member of the configuration of MIk (k ≥ 1), M21 , M22 , M31 , M32 , M33 or
their transposes a.

a
Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B,

12(2):153162, 1972)

A subset of the forbidden submatrices for the SC1P.SC1P 6 / 72
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Configuration of a matrix :
set of matrices obtained by row

and/or column permutations.

Configuration of a matrix
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Problems based on SC1P

Simultaneous Consecutive Ones Submatrix (SC1S) problems

SC1S-row deletion.
SC1S-column deletion.
SC1S-row & column deletion.

Simultaneous Consecutive Ones Editing (SC1E ) problems

SC1P-0-flipping
SC1P-1-flipping 3

SC1P-01-flipping

3Marcus Oswald and Gerhard Reinelt. The simultaneous consecutive ones problem.
Theoretical Computer Science, 410(21-23):19861992, 2009.
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Applications

In Bioinformatics

To discover functionally meaningful patterns from gene expression
data4.

Metabolic network of Adjacency matrix of metabolites
gene-expression data

- represents 1-entries

- represents 0-entries

Gene expression data mapped onto metabolic network.
An adjacency matrix of metabolites was created.
Consecutive ones clustering method used to obtain network clusters.

4
R. Knig, G. Schramm, M. Oswald, H. Seitz, S. Sager, M. Zapatka, G. Reinelt, R. Eils, Discovering functional gene

expression patterns in the metabolic network of escherichia coli with wavelets transforms, BMC bioinformatics 7 (1) (2006) 119.
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Biconvex graphs & SC1P

Biconvex Graphs

A bipartite graph G = (V1,V2,E ) is biconvex if both V1 and V2 can be
ordered so that for every vertex v in V1 ∪ V2, neighbors of v occur
consecutively in the ordering.

x1

x2

x3

x4

y1

y2

y3

y4

y5
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Characterization of Biconvex graphs

A bipartite graph G = (V1,V2,E ) is biconvex if and only if its half
adjacency matrix has the SC1P a .

a
Alan Tucker. A structure theorem for the consecutive 1s property. Journal of Combinatorial Theory, Series B,

12(2):153162, 1972)

x1

x2

x3

x4

y1

y2

y3

y4

y5

Bipartite Graph

Half-adjacency matrix
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Biconvex graphs : Constrained Vertex Deletion

x1

x2

x3

x4

y1

y2

y3

y4

y5

A bipartite graph G = (V1, V2, E) (not biconvex)

Half-adjacency matrix of G, M(G)

V1 = {x1, x2, x3, x4} and V2 = {y1, y2, y3, y4, y5}
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Biconvex graphs : Constrained Vertex Deletion
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Biconvex graphs : Constrained Vertex Deletion

x1

x2

x3

x4

y1

y2

y3

y4

y5

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

SC1S-row deletion ⇔ Problem of finding a minimum number of vertices to
be deleted from V1, so that the resultant graph is biconvex.
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Biconvex graphs : Constrained Vertex Deletion
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Biconvex graphs : Constrained Vertex Deletion

x1

x2
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x4

y1

y2

y3

y4

y5

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

SC1S-column deletion ⇔ Problem of finding a minimum number of
vertices to be deleted from V2, so that the resultant graph is biconvex.
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Biconvex graphs : Vertex Deletion
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Biconvex graphs : Vertex Deletion

x1

x2

x3

x4

y1

y2

y3

y4

y5

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

SC1S-row & column deletion ⇔ Problem of finding a minimum number of
vertices to be deleted from V1∪V2, so that the resultant graph is biconvex.
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Biconvex graphs : Vertex Deletion
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A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

SC1S-row & column deletion ⇔ Problem of finding a minimum number of
vertices to be deleted from V1∪V2, so that the resultant graph is biconvex.
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Biconvex graphs : Completion
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A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)
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Biconvex graphs : Completion

x1

x2

x3

x4

y1

y2

y3

y4

y5

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

1
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Biconvex graphs : Completion

x1

x2

x3

x4

y1

y2

y3

y4

y5

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

1

SC1P-0-Flipping⇔ Problem of finding a minimum number of non-edges to
be added to G, so that the resultant graph is biconvex.
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Biconvex graphs : Completion
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SC1P-0-Flipping⇔ Problem of finding a minimum number of non-edges to
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Biconvex graphs : Edge Deletion
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Biconvex graphs : Edge Deletion

x1
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A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

0
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Biconvex graphs : Edge Deletion

x1

x2

x3

x4

y1

y2

y3

y4

y5

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

0

SC1P-1-Flipping ⇔ Problem of finding a minimum number of edges to be
deleted from G, so that the resultant graph is biconvex.
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Biconvex graphs : Edge Deletion

x1

x2

x3

x4

y1

y2

y3

y4

y5
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SC1P-1-Flipping ⇔ Problem of finding a minimum number of edges to be
deleted from G, so that the resultant graph is biconvex.
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Biconvex graphs : Edge Modification
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A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)
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Biconvex graphs : Edge Modification

x1

x2

x3

x4

y1

y2

y3

y4

y5

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

0

1
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Biconvex graphs : Edge Modification

x1
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x4
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y3

y4

y5

A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

0

1

SC1P-01-Flipping ⇔ Problem of finding a minimum number of edges to
be added/deleted to/from G, so that the resultant graph is biconvex.
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Biconvex graphs : Edge Modification
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A bipartite graph G (not biconvex) Half-adjacency matrix of G, M(G)

0

1

SC1P-01-Flipping ⇔ Problem of finding a minimum number of edges to
be added/deleted to/from G, so that the resultant graph is biconvex.
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Classical Complexity Results

Decision version of SC1S and SC1E problems are NP-complete.
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NP-completeness of k-SC1S-R

Hamiltonian-Path ≤p k-SC1S-R

Transformation

Graph G = (V ,E ), where |V | = n and |E | = m.
Edge vertex incidence matrix M(G )m×n, where k = |m| − |n|+ 1.

G has a Hamiltonian path ⇔ there exists a set of rows of size k in
M(G ) whose deletion results in a matrix M

′
(G ), that satisfy the

SC1P.
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NP-completeness of k-SC1S-R

Forward direction:

v2

v5

v1

v4

v6

v3

G

M(G )
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NP-completeness of k-SC1S-R

Reverse direction:

M

M
′

Consider G ′, the subgraph ob-
tained from M ′ by consider-
ing M ′ as an edge- vertex in-
cidence matrix.
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NP-completeness of k-SC1S-C

k-SC1S-C problem : transpose of k-SC1S-R problem.

NP-completeness of k-SC1S-C

consider M as the vertex-edge incidence matrix.

k as the number of columns to be deleted.
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NP-completeness of k-SC1S-RC

Biconvex Vertex Deletion ≤p k-SC1S-RC

BICONVEX VERTEX DELETION

Instance: A bipartite graph G = (V1,V2,E ) and an integer k ≥ 0.
Question: Does there exist a set of vertices of size at most k in G , whose
deletion results in a biconvex graph?

Biconvex Vertex Deletion problem is NP-complete 5.

Transformation

A bipartite graph G = (V1,V2,E ), where |V1| = n1, |V2| = n2 and
|E | = m.
Half-adjacency matrix MGn1×n2

.

5Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on
Computing, 10(2):310327, 1981.
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NP-completeness of k-SC1S-RC

Claim: G has a set of vertices of size at most k, whose deletion
results in a biconvex graph ⇔

there exists a set of rows and columns
of size at most k in M(G ), whose deletion results in a matrix M

′
(G ),

that satisfy the SC1P.

The above claim follows from the characterization of biconvex graphs
relating its half-adjacency matrices and the SC1P.
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NP-completeness of k-SC1P-0E

k-Chain-Completion ≤p k-SC1P-0E

Chain Graphs

Bipartite graph G = (V1,V2,E ) with a linear ordering of the vertices
in V1

a.

N(u1) ⊆ N(u2) ⊆ N(u3) ⊆ . . . ⊆ N(u|V1|)

a
Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge modification

problems. Lecture notes in computer science, pages 6577, 1999.

x1

x2

x3

x4

x5

y1

y2

y4

N(x3) = {y3}
N(x2) = {y2, y3}
N(x1) = {y2, y3, y4}
N(x4) = {y1, y2, y3, y4}
N(x5) = {y1, y2, y3, y4}

N(x3) ⊆ N(x2) ⊆ N(x1) ⊆ N(x4) ⊆ N(x5)

A chain graph

y3

A chain graph
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NP-completeness of k-SC1P-0E

Chain Completion

Finding a minimum number of non-edges to be added to a
given bipartite graph so that the graph becomes a chain graph.

The decision version of the problem - k-Chain Completion
is NP-complete a.

a
Pl Grns Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D Sullivan. On the threshold of

intractability. In Algorithms-ESA 2015, pages 411423. Springer, 2015.
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NP-completeness of k-SC1P-0E

The half adjacency matrix of a chain graph doesn’t contain(
1 0
0 1

)
as a submatrix and satisfies the SC1P.

x1

x2

x3

x4

x5

y1

y2

y4

A chain graph G

y3

Half-adjacency matrix of G
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NP-completeness of k-SC1P-0E

Transformation

A bipartite graph G = (V1,V2,E ), with |V1| = n1, |V2| = n2 and
|E | = m, where MGn1×n2

is the half adjacency matrix of G.

Matrix M =

[
Jm,n MGn1×n2

0m,n Jm,n

]


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 1 1 1

⇒



1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1


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NP-completeness of k-SC1P-0E

1 0 0
0 1 0

1
0

0
1

0 0

1 1 0
0 1 1
1 0 1

1 1 0
0 1 1
0 0 1

1
0
1

1 0 0 1

1 1 0
0 1 1
0 0 1

0
0
1

0 0 0 1

0
0
0
1

1 0 0 0 1

1 1 0
0 1 1
0 0 1

0
0
1

0 0 0 1

0
0
0
1

0 0 0 0 1

0
0
0
0
1

1 0 0 0 0 1

MI1

MI2 MI3
MI4
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NP-completeness of k-SC1P-01E

k-Chain-Editing ≤p k-SC1P-01E

Chain Editing

Finding a minimum number of edges to be added and removed
from a given bipartite graph so that the graph becomes a chain
graph.

The decision version of the problem, k-Chain Editing is
NP-completea.

a
Pl Grns Drange, Markus Sortland Dregi, Daniel Lokshtanov, and Blair D Sullivan. On the threshold of

intractability. In Algorithms-ESA 2015, pages 411423. Springer, 2015.
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NP-completeness of k-SC1P-01E

Transformation

A bipartite graph G = (V1,V2,E ), with |V1| = n1, |V2| = n2 and
|E | = m, where MGn1×n2

is the half adjacency matrix of G.

Matrix M =

[
Jm,mn MG

0mn,mn Jmn,n

]


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 1 1 1

⇒



1 1 1 · · · 1 1 0 0 0 0
1 1 1 · · · 1 1 1 0 0 0
1 1 1 · · · 1 1 1 1 0 0
1 1 1 · · · 1 1 1 0 1 0
1 1 1 · · · 1 1 1 1 1 1
0 0 0 · · · 0 1 1 1 1 1
0 0 0 · · · 0 1 1 1 1 1
0 0 0 · · · 0 1 1 1 1 1
...

...
...

. . .
...

...
...

...
...

...
0 0 0 · · · 0 1 1 1 1 1


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Parameterized Versions of SC1S & SC1E problems

Simultaneous Consecutive Ones Submatrix Problems

Instance:

< M, d >- An m × n binary matrix M and an integer d ≥ 0.
Parameter: d .
d-SC1S-R: Does there exist a set of rows of size at most d in M whose
deletion results in a matrix with the SC1P?
d-SC1S-C: Does there exist a set of columns of size at most d in M
whose deletion results in a matrix with the SC1P?
d-SC1S-RC: Does there exist a set of rows and columns of size at most d
in M whose deletion results in a matrix with the SC1P?
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Parameterized Versions of SC1S & SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance:

< M, d >- An m × n binary matrix M and an integer d ≥ 0.
Parameter: d .
d-SC1P-1E: Does there exist a set of 1-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-0E: Does there exist a set of 0-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-01E: Does there exist a set of entries of size at most d in M
whose flipping results in a matrix with the SC1P?

SC1P 54 / 72



Parameterized Versions of SC1S & SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: < M, d >- An m × n binary matrix M and an integer d ≥ 0.

Parameter: d .
d-SC1P-1E: Does there exist a set of 1-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-0E: Does there exist a set of 0-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-01E: Does there exist a set of entries of size at most d in M
whose flipping results in a matrix with the SC1P?

SC1P 54 / 72



Parameterized Versions of SC1S & SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: < M, d >- An m × n binary matrix M and an integer d ≥ 0.
Parameter: d .

d-SC1P-1E: Does there exist a set of 1-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-0E: Does there exist a set of 0-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-01E: Does there exist a set of entries of size at most d in M
whose flipping results in a matrix with the SC1P?

SC1P 54 / 72



Parameterized Versions of SC1S & SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: < M, d >- An m × n binary matrix M and an integer d ≥ 0.
Parameter: d .
d-SC1P-1E: Does there exist a set of 1-entries of size at most d in M
whose flipping results in a matrix with the SC1P?

d-SC1P-0E: Does there exist a set of 0-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-01E: Does there exist a set of entries of size at most d in M
whose flipping results in a matrix with the SC1P?

SC1P 54 / 72



Parameterized Versions of SC1S & SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: < M, d >- An m × n binary matrix M and an integer d ≥ 0.
Parameter: d .
d-SC1P-1E: Does there exist a set of 1-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-0E: Does there exist a set of 0-entries of size at most d in M
whose flipping results in a matrix with the SC1P?

d-SC1P-01E: Does there exist a set of entries of size at most d in M
whose flipping results in a matrix with the SC1P?

SC1P 54 / 72



Parameterized Versions of SC1S & SC1E problems

Simultaneous Consecutive Ones Editing Problems

Instance: < M, d >- An m × n binary matrix M and an integer d ≥ 0.
Parameter: d .
d-SC1P-1E: Does there exist a set of 1-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-0E: Does there exist a set of 0-entries of size at most d in M
whose flipping results in a matrix with the SC1P?
d-SC1P-01E: Does there exist a set of entries of size at most d in M
whose flipping results in a matrix with the SC1P?

SC1P 54 / 72



FPT algorithms for SC1S and SC1E problems

Use forbidden submatrix characterization of SC1P.

A subset of the forbidden submatrices for the SC1P.

fixed size forbidden submatrices :
{M21

,M22
,M31

,M32
,M33

,MT
21
,MT

22
,MT

31
,MT

32
,MT

33
}.

MIk
and MT

Ik
(where k ≥ 1) : size unbounded.
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22
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31
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(where k ≥ 1) : size unbounded.

Given a matrix M, detection of forbidden submatrices 6

Fixed size : in O(m6.n)-time.

MIk
and MT

Ik
(where k ≥ 1) : O(m3n3)-time.

6Michael Dom. Recognition, Generation, and Application of Binary Matrices with the
Consecutive Ones Property. Cuvillier, 2009.
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An FPT algorithm for d-SC1S-R problem

〈M,d〉

〈M1, d1〉 〈M2, d2〉 〈M3, d3〉〈M4, d4〉 〈M5, d5〉 〈M6, d6〉
. . . . . . . . . . . . . . . . . .

Find a fixed size forbidden submatrix and branch on the number of rows

1N. Narayanaswamy, R. Subashini, Obtaining matrices with the consecutive ones property by row deletions,

d-COS-R subroutine runs in O∗(8d)- time. (O∗ notation ignores the polynomial factors and focuses on exponential part.)

Algorithmica 71 (3) (2015) 758773.

Apply d-COS-R1 algorithm to each of the leaf instances

.

.

.

. . . . . . . . . . . . . . .

.

.

.

. . .

. . . . . . . . .

to destroy MIk and MT
Ik
.
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An FPT algorithm for d-SC1S-R problem

d-COS-R

Instance: A binary matrix M and an integer d ≥ 0.
Question:

Does there exist a set of rows of size at most d in M, whose
deletion results in a matrix with the C1P for rows?
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An FPT algorithm for d-SC1S-R problem

One of the fixed-size forbidden matrices occurs as a submatrix of
every matrix in the above figure except MIk

.
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An FPT algorithm for d-SC1S-R problem

MT
21

MT
31

One of the fixed-size forbidden matrices occurs as a submatrix of
every matrix in the above figure except MIk

.
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An FPT algorithm for d-SC1S-R problem

MT
21

MT
31

One of the the fixed-size forbidden matrices occurs as a submatrix of
every matrix in the above figure except MIk

.
Applying d-COS-R algorithm on a leaf instance destroys only
forbidden matrices of type MIk

.
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An FPT algorithm for d-SC1S-R problem

d1 row deletions - destroying fixed-size forbidden matrices.

d2 row deletions - destroying MIk
and MT

Ik
(where k ≥ 1)

d1 + d2 ≤ d .

Time taken to destroy the finite size forbidden matrices is O (6d1)

Time taken to destroy the non-finite size forbidden matrices is O (8d2).

Total run-time of the algorithm is O∗(8d).
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An FPT algorithm for d-SC1P-0E

Observation

The representing graph of an MIk
and MT

Ik
(where k ≥ 1) is a chordless

cycle of length 2k + 4.

1 1 0

0 1 1

1 0 1

x1

x2

x3

y1 y2 y3

MI1

x1 y1

y2

x2 y3

x3

GMI1
Representing graph

Flipping a 0-entry in M is
equivalent to adding an edge in
the representing graph of M.

To destroy MIk
and MT

Ik
-

sufficient to destroy chordless
cycles of length greater than
four in the representing graph
of M.
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Chordal Bipartite graph

A chordal bipartite graph is a bipartite graph which does not
contain chordless cycles of length greater than four.

x1 y1

x2

y2x3

y3

No of edges to be added = 1

x1 y1

x2

x3y3

x4

No of edges to be added = 2

y2

y4
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An FPT algorithm for d-SC1P-0E

Lemma1

Let H = (V1,V2,E ) be a chordless cycle of length 2k + 4 (where k ≥ 1).
Then, the minimum number of edges to be added to H so that H is
chordal bipartite is k and the number of ways to do this is at most
6.75k+1a.

a
H. Kaplan, R. Shamir, R. E. Tarjan, Tractability of parameterized completion problems on chordal, strongly

chordal, and proper interval graphs, SIAM Journal on Computing 28 (5) (1999) 19061922.

Corollary

The minimum number of 0-flippings required to destroy an MIk
or MT

Ik
,

where k ≥ 1 is k.

Lemma2

The total time required to destroy all MIk
and MT

Ik
in M is O∗(6.75d).
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An FPT algorithm for d-SC1P-0E

Given a binary matrix M and a nonnegative integer d ,

If M has a forbidden matrix of type MIk
and MT

Ik
where k > d ,

immediately return NO.
Otherwise find a minimum size forbidden matrix in M and branch into
at most 18 subcases.

Running time : O∗(18d).
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An FPT algorithm for d-SC1S-RC problem

〈M,d〉

〈M1, d1〉 〈M2, d2〉 〈M3, d3〉〈M4, d4〉 〈M5, d5〉 〈M11, d11〉
. . . . . . . . . . . . . . . . . .

Find a fixed size forbidden submatrix and branch on the rows and columns
. . .

.

.

.

. . . . . . . . . . . . . . .

.

.

.

. . .

. . . . . . . . .

. . .

Reduce each of the leaf instance to an instance of Chordal
Vertex Deletion 7 problem.

Kill shorter chordless cycles of lenth six, eight and ten.
Reduce each four cycle to an edge.
Remove all degree 1 vertices.

7
Y. Cao, D. Marx, Chordal editing is fixed-parameter tractable, Algorithmica 75 (1) (2016) 118137.
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An FPT algorithm for d-SC1S-RC problem

d1 row deletions for destroying fixed-size forbidden matrices.

d2 row deletions for destroying MIk
and MT

Ik
(where k ≥ 1)

d1 + d2 ≤ d .

Time taken to destroy the finite size forbidden matrices is O (11d1)

Chordal Vertex Deletion algorithm runs in O∗(2d2logd2).

Total run-time of the algorithm is O∗(2dlogd).
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FPT algorithm for d-SC1S-R on (2, ∗)8-matrices

Forbidden submatrices :
MT

31
,MIk

(k ≥ 1),MT
Ik

(k ≥ 1)

Destroy every submatrix of
type MT

31
in M.

M3M1 M4

M

M2

MT
31

r1 r2 r3 r4

Preprocess the resultant
matrix M to remove identical
rows and columns.

If M still does not have
SC1P, then remaining
forbidden submatrices are
pairwise disjoint.

x1

y1

x2

y4

x4

y2

y5

x5

y6

x3

y3

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6

1 1 0 0 0 0

1 0 1 1 1 0

0 0 1 0 0 1

0 1 0 1 0 0

0 0 0 0 1 1

8
A (2, ∗)-matrix have at most two ones per column and any number of ones per row
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FPT algorithm for d-SC1S-R on (2, ∗)-matrices

Uses a search tree.

Each node : four subproblems.

Size of search tree : O(4d).

A submatrix isomorphic to MT
31

: O(m4n)-time.

Time required for Stage 1 :
O(4dm4n).

MIk
and MT

Ik
: O(n3m3) time.

Number of MIk
and MT

Ik
in M :

O(min(m, n))

Size of search tree : O(4d).

Time required for Stage 2 :
O(4dm3n3).

Total time complexity :
O(4d(m4n + m3n3))

d-SC1S-R on a (2, ∗)-matrix Mm×n, can be solved in O∗(4d)-time, where
d denotes the number of rows that can be deleted. Consequently it is FPT.
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Concluding Remarks

Decision versions of SC1S & SC1E problems : poly-time solvable on
(2, 2)9-matrices.

Parameterized results

Problem (2, ∗)-matrix (∗, 2)-matrix general-matrix

d-SC1S-R\C O∗(4d\3d) O∗(3d\4d) O∗(8d)
d-SC1S-RC O∗(7d) O∗(7d) O∗(2dlogd)
d-SC1P-0E - - O∗(18d)
d-SC1P-1E O∗(6d) O∗(6d) ?
d-SC1P-01E - - ?

9(2, 2)-matrix have at most two ones per row and at most two ones per column
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