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k-means Clustering
Problem (k-means)

Given n points X C RY, and an integer k, find k points C ¢ R?
(called centers) such that the sum of squared Euclidean distance of
each point in X to its closest center in C is minimized. That is, the
following cost function is minimized:

®(C,X) = _ min ([|x - c[|?)

xeX

’

Example: k =4,d = 2

A
.
° °
[} °
20 [} .“.
e q © o®
e o °
.vo .b
®eooe e
.
v

v

Ragesh Jaiswal D2-Sampling and k-Means Clustering




k-means Clustering
Lower/Upper Bounds

@ Lower bounds:
o The problem is NP-hard when k > 2 d > 2
[Das08, MNV12, Vat09].
o Theorem [ACKS15]: There is a constant € > 0 such that it is

NP-hard to approximate the k-means problem to a factor
better than (1 + ¢).
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k-means Clustering
Lower/Upper Bounds

@ Lower bounds:
o The problem is NP-hard when k > 2, d > 2
[Das08, MNV12, Vat09].
o Theorem [ACKS15]: There is a constant € > 0 such that it is
NP-hard to approximate the k-means problem to a factor
better than (1 + ¢).

@ Upper bounds: There are various approximation algorithms for
the k-means problem.

Citation Approx. factor | Running Time
[AV07] O(log k) polynomial time
[KMNT*02] 9+¢ polynomial time
[KSS10, JKY15, FMS07] | (1 + ¢) 0 <nd - 2O(k/ﬁ>>
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k-means Clustering
Beyond worst case

@ Various results of “beyond worst-case’ flavour have been
attempted in the context of the k-means and clustering
problems in general.

e Mixture of Gaussians.

o Clustering under separation assumptions on the dataset. The
working philosophy is that a dataset is clusterable only when it
satisfies some separation.

@ ORSS separation [ORSS13]
e BBG approximate stability [BBG13]
o ...
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k-means Clustering

Beyond worst case

@ “Beyond worst-case’
e Mixture of Gaussians.
o Clustering under separation.
o Clustering in semi-supervised setting where the clustering
algorithm is allowed to make “queries’ during its execution.
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Semi-Supervised Active Clustering (SSAC)

Same-cluster queries

e "“Beyond worst-case’
e Mixture of Gaussians.
o Clustering under separation.
o Clustering in semi-supervised setting where the clustering
algorithm is allowed to make “queries’ during its execution.
@ Semi-Supervised Active Clustering (SSAC) [AKBD16]: The
clustering algorithm is given the dataset X C RY and integer
k (as in the classical setting) and it can make same-cluster
queries.
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Semi-Supervised Active Clustering (SSAC)

Same-cluster queries

@ SSAC framework: Same-cluster queries.

o A limited number of such queries (or some weaker version)
may be feasible in certain settings.

e So, understanding the power and limitations of this idea may
open interesting future directions.

Figure: SSAC framework: same-cluster queries
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Semi-Supervised Active Clustering (SSAC)

Known results

o Clearly, we can output optimal clustering using O(n?)
same-cluster queries. Can we cluster using fewer queries?

@ The following result is already known for the SSAC setting.

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(knlog n) and
makes O(k?log k + klog n) same-cluster queries and returns the
optimal clustering for a dataset that satisfies some separation

guarantee.
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Semi-Supervised Active Clustering (SSAC)

Known results

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(knlog n) and
makes O(k?log k 4 k log n) same-cluster queries and returns the
optimal clustering for a dataset that satisfies some separation
guarantee.

o A few things to note about the above result:
e This is an exact clustering result.
o The result holds given that the input datasets satisfies a
separation guarantee.
e Finally, the number of same-cluster queries is not independent
of the data size n.
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Semi-Supervised Active Clustering (SSA

Our contributions

Theorem (Informally stated theorem from [AKBD16])

There is a randomised algorithm that runs in time O(knlog n) and
makes O(k? log k + k log n) same-cluster queries and returns the
optimal clustering for a dataset that satisfies some separation
guarantee.

@ A few things to note about the above result:
e This is an exact clustering result.
o The result holds given that the input datasets satisfies a separation
guarantee.
o Finally, the number of same-cluster queries is not independent of
the data size n.
@ Our contributions (informal):

o We extend the theory to the approximation setting while removing
the separation requirement.

o We give bounds on the number of same-cluster queries which
interestingly is independent of data size n.

o We extend our results to a faulty-query setting where the answers
to same-cluster queries may be incorrect. This is a more
reasonable setting.
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Semi-Supervised Active Clustering (SSAC)

Our contributions

@ Our contributions (informal):

o We extend the theory to the approximation setting while removing
the separation requirement.

e We give bounds on the number of same-cluster queries which
interestingly is independent of data size n.

e We extend our results to a faulty-query setting where the answers
to same-cluster queries may be incorrect. This is a more
reasonable setting.

Theorem (Main result)

Let 0 < e < 1/2. There is a randomised query algorithm that returns
a (1 + ¢) approximate clustering for any given dataset. The algorithm
runs in time O(nd - poly(k/e)) makes poly(k/e) same-cluster queries.
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Semi-Supervised Active Clustering (SSAC)

Our contributions

@ Our contributions (informal):

o We extend the theory to the approximation setting while removing
the separation requirement.

o We give bounds on the number of same-cluster queries which
interestingly is independent of data size n.

e We extend our results to a faulty-query setting where the answers
to same-cluster queries may be incorrect. This is a more
reasonable setting.

Theorem (Main result)

Let 0 < e < 1/2. There is a randomised query algorithm that returns
a (1 + €) approximate clustering for any given dataset. The algorithm
runs in time O(nd - poly(k/e)) makes poly(k/e) same-cluster queries.

Theorem (Main result - query lower bound)

If ETH holds, then there exists a constant ¢ > 1 such that any
c-approximation query algorithm that runs in time poly(n, k, d) makes
at least k/polylog(k) same-cluster queries.
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Semi-Supervised Active Clustering (SSAC)

Our contributions

@ Our contributions (informal):

o We extend the theory to the approximation setting while removing
the separation requirement.

o We give bounds on the number of same-cluster queries which
interestingly is independent of data size n.

o We extend our results to a faulty-query setting where the answers
to same-cluster queries may be incorrect. This is a more
reasonable setting.

Theorem (Main result)

Let 0 < e < 1/2. There is a randomised query algorithm that returns
a (1 + €) approximate clustering for any given dataset. The algorithm
runs in time O(nd - poly(k/c)) makes poly(k/e) same-cluster queries.

@ The above result can be extended to a setting where the response
to every same-cluster query is incorrect with probability at most
g<1/2.

Theorem (Main result - query lower bound)

If ETH holds, then there exists a constant ¢ > 1 such that any
c-approximation query algorithm that runs in time poly(n, k, d) makes
at least k/polylog(k) same-cluster queries.
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Main ideas for Query Algorithm J
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Query Algorithm
A crucial lemma

Lemma ([IKI94])

Let S be a set of s point sampled independently from any given point
set X C RY uniformly at random. Then for any § > 0, the following
holds with probability at least (1 — §):

1
o(r(5).) < (1+ 525 ) - 00,30, where 7(X) = Z|X|xx
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Figure: The cost w.r.t. the centroid (blue triangle) of all points (blue dots) is close to the
cost w.r.t. the centroid (green triangle) of a few randomly chosen points (green dots).
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Query Algorithm

Main idea

o Easy case: The optimal clusters have roughly the same size.
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o
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@ The query algorithm samples poly(k /) points uniformly from the
dataset and uses same-cluster queries to partition them into
subsets of optimal clusters.

@ The mean of the partitions will be good centers using [IKI94]
lemma since each partition contains Q(1/¢) points.
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Query Algorithm

Main idea

@ The query algorithm samples poly(k/e) points uniformly from the
dataset and uses same-cluster queries to partition them into
subsets of optimal clusters.

@ The mean of the partitions will be good centers using [IKI94]
lemma since each partition contains Q(1/¢) points.

@ The above idea fails if some clusters are small compared to other
clusters as below.
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Query Algorithm

Main idea

o Difficult (general) case: Some clusters are small compared to
other clusters.

@ Main idea: After finding the first center using uniform sampling
find subsequent centers using D?-sampling.

e D?-sampling: Biased sampling that gives preference to points that
are far from the already chosen centers.
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Constrained k-means )
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Constrained k-means

o Clustering using the k-means formulation implicitly assumes that
the target clustering follows locality property that data points
within the same cluster are close to each other in some geometric
sense.

@ There are clustering problems arising in Machine Learning where
locality is not the only requirement while clustering.

o r-gather clustering: Each cluster should contain at least r points.

o Capacitated clustering: Cluster size is upper bounded.

o [-diversity clustering: Each input point has an associated color and
each cluster should not have more that % fraction of its points
sharing the same color.

o Chromatic clustering: Each input point has an associated color
and points with same color should be in different clusters.
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Constrained k-means

@ Clustering using the k-means formulation implicitly assumes
that the target clustering follows locality property that data
points within the same cluster are close to each other in some
geometric sense.

@ There are clustering problems arising in Machine Learning
where locality is not the only requirement while clustering.

e r-gather clustering: Each cluster should contain at least r
points.

o Capacitated clustering: Cluster size is upper bounded.

e [-diversity clustering: Each input point has an associated color
and each cluster should not have more that % fraction of its
points sharing the same color.

e Chromatic clustering: Each input point has an associated color
and points with same color should be in different clusters.

@ A unified framework that considers all the above problems
would be nice.
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Constrained k-means

List k-means

Problem (List k-means)

Let X C RY, k be an integer, ¢ > 0 and X1, ..., Xic be an arbitrary partition
of X. Given X, k and €, find a list of k-centers, Cy, ..., C; such that for at
least one index j € {1,...,1}, we have

Z > llx—cil? < (1+e€)-OPT,

i=1 xeX;

where C; = (c1, ..., ck). Note that OPT = Z 12 xex: X = T( Xi)|?.

@ Is outputting a list a necessary requirement?
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Problem (List k-means)

Let X C RY, k be an integer, ¢ > 0 and X1, ..., X be an arbitrary partition
of X. Given X, k and ¢, find a list of k-centers, Cy, ..., C; such that for at
least one index j € {1,..., I}, we have

k
S lx—clP<(1+¢€)- OPT,

i=1 xeX;

where G = (c1, ..., c). Note that OPT = I S o [|x — T(X)| 2.

@ We can formulate an existential question related to the size of such a
list.

Let X C RY, k be an integer, € > 0 and X1, ..., X be an arbitrary partition
of X. Let L be the size of the smallest list of k centers such that there is
at least one element (c1, ..., ck) in this list such that

Zle D oxex; |1x = cil? < (1 +¢)- OPT. What is the value of L?

@ Our results [BJK16]:
o Lower bound: Q <2ﬁ(%)>

o Upper bound: O (20(%)).
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List k-means: upper bound

Main ideas

@ We start by sampling uniformly at random.
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List k-means: upper bound

Main ideas

@ We start by sampling uniformly at random and considering all
possible subsets.

@ One of these subsets behave like a uniform sample from the largest
cluster and its centroid is good for this cluster.

A
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List k-means: upper bound

Main ideas

@ Now we are done with the largest cluster and we do a D?-sampling.
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List k-means: upper bound

Main ideas

o Now we are done with the largest cluster and we do a D?-sampling.
@ Unfortunately, due to poor separability, none of the subsets behave
like a uniform sample from the second cluster.

A
A\

Ragesh Jaiswal D2-Sampling and k-Means Clustering



List k-means: upper bound

Main ideas

@ Unfortunately, due to poor separability, none of the subsets behave
like a uniform sample from the second cluster.
@ So, we may end up not obtaining a good center for the second cluster.
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List k-means: upper bound

Main ideas

@ So, we may end up not obtaining a good center for the second cluster.
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List k-means: upper bound

Main ideas

@ So, we may end up not obtaining a good center for the second cluster.
@ This is an undesirable result.
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List k-means: upper bound

Main ideas

o Let us go back. The reason that D%-sampling is unable to pick
uniform samples from the second cluster is that some points of the
cluster is close to the first chosen center.

o What we do is create multiple copies of the first center and add it to
the set of points from which all possible subsets are considered.
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List k-means: upper bound

Main ideas

@ These multiple copies act as proxy for the points that are close to the
first center.

@ Now, one of the subsets behave like a uniform sample and we get a
good center.
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List k-means: upper bound

Main ideas

@ And now we just repeat.
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Other Results

e D?-sampling based ideas easily extends to distance measures
that satisfy certain “metric like" properties:

e Mahalanobis distance
e p-similar Bregman divergence

@ These ideas can be extended for the k-median problem where
instead of D?-sampling one can do D-sampling.
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Open Problems

@ In the query setting can we obtain similar results using
non-adaptive queries?
@ How hard is the bi-criteria k-means problem?

o We are allowed to output 2k centers (instead of k) and
compare the solution with the optimal w.r.t. k centers.
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