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Definitions
Tournaments

I A tournament is a directed graph in which there is exactly one arc
between any two vertices.
I Take a complete graph and give each edge an orientation.
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I Observation: Deleting vertices preserves the tournament property
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Definitions
Acyclic Tournaments

I A tournament is acyclic if it does not contain any directed cycle.
I The example tournament is not acyclic
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Definitions
Acyclic Tournaments

I A tournament is acyclic if it does not contain any directed cycle.
I The example tournament is not acyclic

I A tournament
I has a directed cycle if and only if it has a directed triangle
I is acyclic if and only if it contains no directed triangle
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Definitions
Acyclic Tournaments

I A tournament is acyclic if it does not contain any directed cycle.
I The example tournament is not acyclic

I A tournament
I has a directed cycle if and only if it has a directed triangle
I is acyclic if and only if it contains no directed triangle

I An acyclic tournament has a unique topological ordering of
vertices
I We can re-label its vertices as v1, v2, . . . , vn such that every arc is

from a "smaller" vertex to a "larger" vertex.
I In exactly one way.
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Definitions
Topological Ordering

I An acyclic tournament has a unique topological ordering of
vertices
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Definitions
Feedback Vertex Sets

I A feedback vertex set (FVS for short) of a tournament T is any
subset S of its vertices such that deleting S from T gives an acyclic
tournament.

Algorithms Workshop, NISER A 2-Approximation Algorithm for Feedback Vertex Set in Tournaments 5/28



Definitions
Feedback Vertex Sets

I A feedback vertex set (FVS for short) of a tournament T is any
subset S of its vertices such that deleting S from T gives an acyclic
tournament.

Algorithms Workshop, NISER A 2-Approximation Algorithm for Feedback Vertex Set in Tournaments 5/28



The Problem
Weighted Feedback Vertex Set in Tournaments

I Input: A tournament T = (V,A) and a weight function w : V → N
I Non-negative integral weights on vertices

I Task: Find a feedback vertex set of T of the smallest total weight
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Weighted Feedback Vertex Set in Tournaments
Some known results

NP-hardness
I Is NP-hard, even in the unweighted case

I When all vertices have the same weight

Polynomial-time approximation algorithms
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Weighted Feedback Vertex Set in Tournaments
Some known results

NP-hardness
I Is NP-hard, even in the unweighted case

I When all vertices have the same weight

Polynomial-time approximation algorithms

I Unweighted case: Simple 3-factor approximation algorithm
I Weighted case:

I 3-approximation: Local-ratio technique
I 5

2 -approximation: Cai et al., 2000
I Local-ratio technique

I 7
3 -approximation: Mnich, Vassilevska-Williams, and Végh, ESA 2016

I Iterative rounding

Algorithms Workshop, NISER A 2-Approximation Algorithm for Feedback Vertex Set in Tournaments 7/28



Weighted Feedback Vertex Set in Tournaments
Some known results

NP-hardness
I Is NP-hard, even in the unweighted case

I When all vertices have the same weight

Polynomial-time approximation algorithms

I Best known approximation ratio, weighted case:
I 7

3 : Mnich et al., 2016
I Under the Unique Games Conjecture:

I No (2− ε)-approximation
I Even for the unweighted case
I Reduction from Vertex Cover
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Weighted Feedback Vertex Set in Tournaments
Our results

I A randomized polynomial-time 2-factor approximation algorithm
I Runs in time O(nc)
I Outputs an FVS
I Is a 2-factor-approximate solution with probability 1

2

I Derandomized in quasi-polynomial time
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Our 2-Approximation Algorithm
Main Ingredients

I The Local Ratio Technique
I Randomization
I Divide and Conquer
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation

I Input: A tournament T = (V,A) and a weight function w : V → N
I Task: Find a feedback vertex set of T of the smallest total weight
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation

I Input: A tournament T = (V,A) and a weight function w : V → N
I Task: Find a feedback vertex set of T of the smallest total weight

I Recall: Necessary and sufficient to "hit" all directed triangles
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation

I Input: A tournament T = (V,A) and a weight function w : V → N
I Task: Find a feedback vertex set of T of the smallest total weight

I Find a triangle with all three weights positive
I Subtract the least weight from all three weights

I At least one vertex weight becomes zero

I Repeat this till no triangle has all three weights positive
I Return the set of zero-weight vertices
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation

I Input: A tournament T = (V,A) and a weight function w : V → N
I Task: Find a feedback vertex set of T of the smallest total weight

I Find a triangle with all three weights positive
I Subtract the least weight from all three weights

I At least one vertex weight becomes zero

I Repeat this till no triangle has all three weights positive
I Return the set of zero-weight vertices

I Gets us a 3-approximate solution in the unweighted case . . .
I . . . and also in the weighted case.
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation, contd.

I Claim 1: The set S of zero-weight vertices in the final graph is a
feedback vertex set of T.
I Proof
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation, contd.

I Claim 1: The set S of zero-weight vertices in the final graph is a
feedback vertex set of T,

I Claim 2: . . . of weight at most 3 times the weight of an optimum
FVS.
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation, contd.

I Claim 1: The set S of zero-weight vertices in the final graph is a
feedback vertex set of T,

I Claim 2: . . . of weight at most 3 times the weight of an optimum
FVS.
I The total original weight of the vertices in S is not more than the

total weight we reduced from all vertices during the procedure
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation, contd.

I Claim 1: The set S of zero-weight vertices in the final graph is a
feedback vertex set of T,

I Claim 2: . . . of weight at most 3 times the weight of an optimum
FVS.
I The total original weight of the vertices in S is not more than the

total weight we reduced from all vertices during the procedure
I If we reduced a total weight of 3r in a round then the weight of an

optimal FVS reduced by at least r
I Let {x, y, z} be the triangle we modified in this round
I Let w(x) = r. Then w(y) ≥ r , w(z) ≥ r
I An optimal FVS S of the pre-round graph must contain at least one of
{x, y, z}

I The same set S is an FVS of the post-round graph, now with weight
lesser by at least r
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation, contd.

I Claim 1: The set S of zero-weight vertices in the final graph is a
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I The total original weight of the vertices in S is not more than the

total weight we reduced from all vertices during the procedure
I If we reduced a total weight of 3r in a round then the weight of an

optimum FVS reduced by at least r
I If we reduced a total weight of 3q over all rounds then the total

reduction in the weight of an optimum FVS is at least q
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The Local Ratio Technique
Weighted FVS in Tournaments, 3-Approximation, contd.

I Claim 1: The set S of zero-weight vertices in the final graph is a
feedback vertex set of T,

I Claim 2: . . . of weight at most 3 times the weight of an optimum
FVS.
I The total original weight of the vertices in S is not more than the

total weight we reduced from all vertices during the procedure
I If we reduced a total weight of 3r in a round then the weight of an

optimum FVS reduced by at least r
I If we reduced a total weight of 3q over all rounds then the total

reduction in the weight of an optimum FVS is at least q
I The weight of an optimum FVS of the final instance is zero
I The weight of an optimum FVS of the original instance is at least q
I w(S) ≤ 3q ≤ 3× (wt. of an optimum FVS of the original instance)
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The Local Ratio Technique
Weighted FVS in Tournaments, 5

2 -Approximation

I Cai et al. found two graphs:

I Any FVS must pick at least two of the five vertices
I If neither graph is present in a tournament:

I The Weighted FVS problem is polynomial-time solvable
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The Local Ratio Technique
Weighted FVS in Tournaments, 5

2 -Approximation

I Due to Cai et al.
I Two five-vertex graphs

I If present, must pick at least two vertices
I If not present, polynomial-time solvable!

I Now apply the local ratio technique
I 5

2 -approximation
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The Local Ratio Technique
How to get a 2-Approximation?

I One way could be:
I Find (say) a set of 10-vertex graphs,
I from each of which at least 5 vertices must be picked
I whose absence gives a polynomial-time solvable instance

I Sounds like hard work!
I (Why should these even exist?)
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Our Idea: Use The Local Ratio Technique . . .
. . . "on steroids"

I We find one graph on two vertices
I from which at least one vertex must be picked
I and whose absence gives a polynomial-time solvable instance

I (. . . more or less.)

I The "steroids":
I A "global" take on the local ratio technique
I Randomization
I Plain old Divide and Conquer

I All three are (well-)known ideas
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A Generalized Local Ratio Technique
Applies when there is an optimum solution with many vertices

I Input:
I Tournament T = (V,A) ; |V| = n
I Weight function w : V → N

I Suppose there is an optimal solution S? ; |S?| ≥ 2n
3

I Let L be a set of n
6 vertices of the smallest weight

I Then w(L)
w(S?) ≤

1
6/

2
3 = 1

4
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I Then w(L)
w(S?) ≤

1
6/

2
3 = 1

4

I To get a 5
4 -approximation:

I Pick all of L
I Find an optimum solution for G− L
I Take their union
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A Generalized Local Ratio Technique
Applies when there is an optimum solution with many vertices

I Input:
I Tournament T = (V,A) ; |V| = n
I Weight function w : V → N

I Suppose there is an optimal solution S? ; |S?| ≥ 2n
3

I Let L be a set of n
6 vertices of the smallest weight

I Then w(L)
w(S?) ≤

1
6/

2
3 = 1

4

I To get a 2-approximation:
I Pick all of L
I Let maxL = maxv∈L w(v)
I Set w′ : (V \ L)→ N

I w′(x) = w(x)−maxL

I Find a 2-approximate solution for ((T − L),w′)
I Take their union
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A Generalized Local Ratio Technique
Optimal solution S? ; |S?| ≥ 2n

3

I L: n
6 vertices of the smallest weight

I maxL = maxv∈L w(v)
I w′ : (V \ L)→ N

I w′(x) = w(x)−maxL

I Reduced instance R = ((T − L),w′)

I Rapprox: 2-approximate solution for ((T − L),w′)

I Claim: L ∪ Rapprox is a 2-approximate solution for (T,w)
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A Generalized Local Ratio Technique
S?: Optimal solution, |S?| ≥ 2n

3 ; L: n
6 vertices of least weight

w′(x) = w(x)−maxL, R = ((T − L),w′)
Rapprox: 2-approximation for R

I Claim: L ∪ Rapprox is a 2-approximate solution for (T,w)

I Intuition:
I S? \ L

1. is very large compared to L, and
2. is a solution to the reduced instance R

I Reducing the weight of vertices in S? \ L by maxL causes a very large
drop in the optimum value for R

I Enough to accommodate putting all of L back in to a 2-approximate
solution
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I Proof: Let R? be an optimum solution for ((T − L),w′)
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A Generalized Local Ratio Technique
S?: Optimal solution, |S?| ≥ 2n
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I w′(S? \ L) = w(S? \ L)− |S? \ L| ·maxL ≤ w(S?)− |S? \ L| ·maxL
I |S? \ L| ≥ n

2
I w′(S? \ L) ≤ w(S?)− maxL·n

2
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A Generalized Local Ratio Technique
S?: Optimal solution, |S?| ≥ 2n

3 ; L: n
6 vertices of least weight
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A Generalized Local Ratio Technique
S?: Optimal solution, |S?| ≥ 2n

3 ; L: n
6 vertices of least weight

w′(x) = w(x)−maxL, R = ((T − L),w′)
Rapprox: 2-approximation for R

I Claim: L ∪ Rapprox is a 2-approximate solution for (T,w)

I Proof: Let R? be an optimum solution for ((T − L),w′)
I w′(Rapprox) ≤ 2w(S?)−maxL · n
I w(Rapprox) = w′(Rapprox) + |Rapprox| ·maxL

≤ (2w(S?)−maxL · n) + |Rapprox| ·maxL

= 2w(S?)−maxL(n− |Rapprox|)
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A Generalized Local Ratio Technique
S?: Optimal solution, |S?| ≥ 2n

3 ; L: n
6 vertices of least weight

w′(x) = w(x)−maxL, R = ((T − L),w′)
Rapprox: 2-approximation for R

I Claim: L ∪ Rapprox is a 2-approximate solution for (T,w)

I Proof: Let R? be an optimum solution for ((T − L),w′)
I w′(Rapprox) ≤ 2w(S?)−maxL · n
I w(Rapprox) ≤ 2w(S?)−maxL(n− |Rapprox|)
I w(L ∪ Rapprox) = w(Rapprox) + w(L)

≤ (2w(S?)−maxL(n− |Rapprox|) + |L| ·maxL)

= (2w(S?)−maxL(n− |Rapprox| − |L|))
= (2w(S?)−maxL(n− |Rapprox ∪ L|))
≤ 2w(S?).
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A Generalized Local Ratio Technique
Optimal solution S? ; |S?| ≥ 2n

3

I L: n
6 vertices of the smallest weight

I maxL = maxv∈L w(v)
I w′ : (V \ L)→ N

I w′(x) = w(x)−maxL

I Reduced instance R = ((T − L),w′)

I Rapprox: 2-approximate solution for ((T − L),w′)

I Lemma: L ∪ Rapprox is a 2-approximate solution for (T,w)
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A Generalized Local Ratio Technique
If there is a "large" optimum solution

I Find L, compute w′

I Recursively find a 2-approximate solution Rapprox for ((T − L),w′)

I Return L ∪ Rapprox
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What if there is no optimum solution with ≥ 2n
3

vertices?
Steroid II: Randomization

I Pick a vertex p uniformly at random
I "Pivot" vertex
I There is an optimum solution which does not contain p, with

probability ≥ 1
3

I So there is such a 2-approximate solution as well
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3 , p /∈ S for a 2-approximate solution S
I We look for such an S
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What if there is no optimum solution with ≥ 2n
3

vertices?
Steroid II: Randomization

I Pick a vertex p uniformly at random
I With probability ≥ 1

3 , p /∈ S for a 2-approximate solution S
I We look for such an S

I If p is not part of any directed triangle
I Recurse on the in- and out- neighbourhoods of p
I Get 2-approximate solutions Sin, Sout
I Return S = Sin ∪ Sout
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What if there is no optimum solution with ≥ 2n
3

vertices?
Steroid II: Randomization

I Pick a vertex p uniformly at random
I With probability ≥ 1

3 , p /∈ S for a 2-approximate solution S
I We look for such an S

I If p→ x→ y→ p is a triangle
I {x, y} ∩ S 6= ∅
I Apply the Local Ratio Technique to {x, y}
I Repeat till p is not in any directed triangle
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Tying it all together

I Input: (T = (V,A) ; |V| = n,w : V → N)
I If T has a smallest-weight FVS with at least 2n

3 vertices
I Pick the n

3 least-weight vertices L into a 2-approximate solution
I Delete L from T
I Adjust the weights of the remaining vertices
I Recursively find a 2-approximate solution of the resulting instance
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Tying it all together

I Input: (T = (V,A) ; |V| = n,w : V → N)
I If T has a smallest-weight FVS with at least 2n

3 vertices
I Do stuff

I If T has no smallest-weight FVS with at least 2n
3 vertices

I Pick a "pivot" vertex p uniformly at random
I While p is part of a directed triangle {p, x, y}, apply the local ratio

technique on {x, y}
I This deletes at least one of {x, y}

I If p is not in any directed triangle:
I Recursively find 2-approximate solutions of the in- and out-

neighbourhoods of p
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Tying it all together

I Input: (T = (V,A) ; |V| = n,w : V → N)
I If T has a smallest-weight FVS with at least 2n

3 vertices
I Do stuff

I If T has no smallest-weight FVS with at least 2n
3 vertices

I Do stuff
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Tying it all together

I Input: (T = (V,A) ; |V| = n,w : V → N)

I IF T has a smallest-weight FVS with at least 2n
3 vertices

I Do stuff
I If T has no smallest-weight FVS with at least 2n

3 vertices
I Do stuff
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Tying it all together
Steroid III: Branching + Divide and Conquer

I Input: (T = (V,A) ; |V| = n,w : V → N)
I If n ≤ 10 then solve by brute force
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Tying it all together
Steroid III: Branching + Divide and Conquer

I Input: (T = (V,A) ; |V| = n,w : V → N)
I If n ≤ 10 then solve by brute force
I When n > 10:

I Compute a solution S0 assuming there is an optimum solution with
≥ 2n

3 vertices
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Tying it all together
Steroid III: Branching + Divide and Conquer

I Input: (T = (V,A) ; |V| = n,w : V → N)
I If n ≤ 10 then solve by brute force
I When n > 10:

I Compute a solution S0 assuming there is an optimum solution with
≥ 2n

3 vertices
I Compute 25 solutions S1, . . . , S25:

I Pick a vertex p u.a.r from the set
{v ∈ V ; |N+(v)| ≤ 8n

9 , |N−(v)| ≤ 8n
9 }

I Apply the "local" Local Ratio procedure with p as the pivot to get
solution Si

I Return the minimum-weight set from among S0, S1, . . . , S25
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Tying it all together
Running time analysis

I Recurrence: T(n) ≤ 51 · T(8n/9) +O(n2)
I The "large-solution" step recurses on a graph with 5n

6 < 8n
9 vertices

I Each "small-solution" step recurses on two graphs, each with at
most 8n

9 vertices
I There are 25 "small-solution" steps
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Tying it all together
Running time analysis

I Recurrence: T(n) ≤ 51 · T(8n/9) +O(n2)

I Resolves to T(n) = O(n34) by the Master Theorem
I Let T(n) = aT(n/b) + f(n) ; a ≥ 1, b > 1

I If f(n) = O(nlogb a−ε) then T(n) = Θ(nlogb a)
I log9/8 51 ≈ 33.382
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Tying it all together
Probability of success

I Claim: The procedure outputs a 2-approximate solution of (T,w)
with probability at least half.

I Proof: Induction on the number n of vertices in T
I If n ≤ 10: brute force, exact solution
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Tying it all together
Probability of success

I Claim: The procedure outputs a 2-approximate solution of (T,w)
with probability at least half.

I Proof: Induction on the number n of vertices in T
I If (T,w) has an optimum solution with at least 2n

3 vertices:
I S0 is a 2-approximate solution with probability at least half.

Algorithms Workshop, NISER A 2-Approximation Algorithm for Feedback Vertex Set in Tournaments 25/28



Tying it all together
Probability of success

I Claim: The procedure outputs a 2-approximate solution of (T,w)
with probability at least half.

I Proof: Induction on the number n of vertices in T
I Say (T,w) has no optimum solution with at least 2n

3 vertices
I In computing each S1, . . . , S25, the probability that p is not in an

optimum solution is at least 1
9 .

I There are at least n
9 non-solution vertices v with |N+(v)| ≤ 8n

9 and
|N−(v)| ≤ 8n

9
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Tying it all together
Probability of success

I Claim: The procedure outputs a 2-approximate solution of (T,w)
with probability at least half.

I Proof: Induction on the number n of vertices in T
I Say (T,w) has no optimum solution with at least 2n

3 vertices
I In computing each S1, . . . , S25, the probability that p is not in an

optimum solution is at least 1
9 .

I Inductively, the two recursive solutions are 2-approximate with
probability at least half.

I Each Si is good with probability at least 1
36

I At least one of the 25 Sis is good with probability at least
I 1− (1− 1

36 )25 ≥ 1
2
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In Conclusion . . .

I Theorem: There is a randomized polynomial-time algorithm
which, given an instance (T,w) of Weighted Tournament
Feedback Vertex Set on n vertices, runs in O(n34) time and
outputs a 2-approximate solution with probability at least half.
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In Conclusion . . .

I Theorem: There is a randomized polynomial-time algorithm
which, given an instance (T,w) of Weighted Tournament
Feedback Vertex Set on n vertices, runs in O(n34) time and
outputs a 2-approximate solution with probability at least half.

I Can be derandomized to run in nO(log n) time
I Try each "good" vertex as pivot, instead of picking 25 of them at

random
I T(n) ≤ (2n + 1) · T(8n/9) +O(n2)
I Resolves to T(n) = nO(log n)
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Open Problems

I Deterministic polynomial time algorithm?
I Reasonable degree for the polynomial?
I 2-approximation algorithms for other 3-hitting set problems?

I E.g: CLUSTER VERTEX DELETION
I 9

4 -approximation
I Local Ratio Technique
I Fiorini et al., August 2018.
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Thank You!
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