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Prior Work and Open Question

General Coverage
e greedy gives a (1 — 1/e)-approximation

e NP-hard to approximate within 1 — 1/e 4 € for any € > 0

Geometric Coverage

e parameterized (1 — €)-approximation in f(k,¢€) - poly(n)
time for set systems with bounded VC-dimension

e exponential dependence on k cannot be removed as some
cases (such as halfspaces in R*) are APX-hard

Question: In which of the geometric cases that are not known
to be APX-hard (e.g. halfspaces in R>, pseudodisks in R?, ...)

can we obtain a (true) PTAS?
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Set Cover

Given a ground set U, a set family F C 2V find a smallest
family & C F covering the whole ground set U

General Set Cover

e Inn-approximation via greedy

e NP-hard to approximate within (1 —¢€)Inn

Geometric Set Cover

e many techniques and a large body of literature: e-nets,
quasi-uniform sampling and many more . ..

e |ocal search gives a PTAS for a multitude of problems:
halfspaces in R3, pseudodisks in R?, terrain guarding,. . .



Geometric Set Cover and Local Search

Algorithm

e pick an integral parameter b > 0



Geometric Set Cover and Local Search

Algorithm

e pick an integral parameter b > 0

e start with an arbitrary feasible solution



Geometric Set Cover and Local Search

Algorithm
e pick an integral parameter b > 0
e start with an arbitrary feasible solution

e repeatedly replace b sets with < b sets as long as possible



Geometric Set Cover and Local Search

Algorithm

e pick an integral parameter b > 0
e start with an arbitrary feasible solution

e repeatedly replace b sets with < b sets as long as possible

Analysis

e construct an exchange graph whose vertices are the sets
In a global and a local optimum solution, respectively



Geometric Set Cover and Local Search

Algorithm

e pick an integral parameter b > 0
e start with an arbitrary feasible solution

e repeatedly replace b sets with < b sets as long as possible

Analysis

e construct an exchange graph whose vertices are the sets
In a global and a local optimum solution, respectively

e Show that this graph is planar



Geometric Set Cover and Local Search

Algorithm

e pick an integral parameter b > 0
e start with an arbitrary feasible solution

e repeatedly replace b sets with < b sets as long as possible

Analysis

e construct an exchange graph whose vertices are the sets
In a global and a local optimum solution, respectively

e Show that this graph is planar

e apply Frederickson’s planar subdivision where pieces
correspond to candidate swaps



Geometric Set Cover and Local Search

Algorithm

e pick an integral parameter b > 0
e start with an arbitrary feasible solution

e repeatedly replace b sets with < b sets as long as possible

Analysis

e construct an exchange graph whose vertices are the sets
In a global and a local optimum solution, respectively

e Show that this graph is planar

e apply Frederickson’s planar subdivision where pieces
correspond to candidate swaps

e use an averaging argument to show existence of a
profitable swap if local > global



Geometric Set Cover and Local Search

Algorithm

e pick an integral parameter b > 0
e start with an arbitrary feasible solution

e repeatedly replace b sets with < b sets as long as possible

Analysis
e construct an exchange graph whose vertices are the sets
In a global and a local optimum solution, respectively
e Show that this graph is planar problem-specific part!

e apply Frederickson’s planar subdivision where pieces
correspond to candidate swaps

e use an averaging argument to show existence of a
profitable swap if local > global



Geometric Set Cover and Local Search

Algorithm

e pick an integral parameter b > 0
e start with an arbitrary feasible solution

e repeatedly replace b sets with < b sets as long as possible

Analysis

e construct an exchange graph whose vertices are the sets
In a global and a local optimum solution, respectively

e Show that this graph is planar

e apply Frederickson’s planar subdivision where pieces

correspond to candidate swaps general machinery!

e use an averaging argument to show existence of a
profitable swap if local > global
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Problem Set Cover Max Coverage

halfspaces in R3 PTAS via LS PTAS via LS conjectured!
halfspaces in R? in P via DP P via DP

pseudodisks PTAS via LS open

hitting pseudodisks PTAS via LS open

1.5D terrain guarding  PTAS via LS open

Set Cover

planar exchange graph PTAS

Max Coverage?
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Exchange Graph

[Mustafa & Ray 2009]

Let F71,.F> be feasible solutions. A graph with node set Fi, />
has the exchange property if for every u € U covered by both
solutions there exist an edge (S1,.52) with u € 1N S5 and

SiE./Tq;

IS{

feasible swap

A = N(A)
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Subdividing Planar Exchange Graphs

Theorem (Frederickson 1987):

For every t > 0, planar G, V(G)
partitions as (V1,..., Vs, X), £ = 0O(n/t)
such that

o [V;UN(V;)| =O0O(t), Vi.

e X separates V; from V;, (Vi # j).

o IN(V;)|=O(vt)

Subdivide planar exchange graph over

optimal solution O and locally optimal
solution &

Each V; = V; U N(V;) defines feasible swap
VNS TV,NO forS Va X

Vi

S| < \XHZM NSI<IX|+) [Vin0O] < \/(IS\HOPT\)HOPT\

~ |S]| < ]OPT\

1__
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Algorithm /Hurdles for Max Coverage

local search: swaps do not change cardinality of the solution
but improve number of covered elements

Hurdles

1. does exchange graph still reflect the objective function?

e maximization < covering is no hard constraint

e exchange graph takes into account only elements covered
by both solution but no individual elements

2. color-imbalanced subdivisions conflict with hard cardinality
constraint
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Theorem:There is a PTAS for any class of max coverage
problems that admits planar (f-separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012

covering points with halfspaces in R3

covering points with pseudodisks in R?

hitting pseudodisks (r-admissable regions) in R? by points
guarding 1.5D terrains

maximum k-dominating set for intersection graphs of
homethetic copies of convex objects (such as arbitrary
squares, translated and scaled copies of convex objects)
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graph classes
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High-Level Overview

1. Get a nearly color-balanced subdivision

Theorem: For every t > 0, planar two-colored G with V(G) = RU B

and |B| = |R|, V(G) partitions as (V1,..., Vs, X), £ = ©(n/t) such that
o |[V;UN(V;)| =06(t), Vi.

X separates V; from V;, (Vi # 7).

N(V3)| = O(#**), Vi

Vi 0 R| — |[V; N B| = O(Vt), Vi

2. Obtain a significantly profitable, almost balanced swap

3. Use submodularity to get a perfectly balanced and (still)
profitable swap
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o |V, UN(V;)| = 6(t), Vi. RA

X separates V; from V;, (Vi # 7).

N(Vi)| = O(%/*), Vi

Vin R = [V N B|| = O(Vt), Vi

e compute uniform subdivision with t! =Vt
e greedily create a permutation 7 of the pieces s.t. every prefix has imbalance
at most +c¢ - V't

® break 7 into ©(n /t) equal-sized intervals

e yields size ©(t), boundary O(t3/4), imbalance O (/%) L pIq pIq PL tl B




Obtaining Approximate Color-Balance

Step 1.1: Uniform subdivision
Lemma: For every t > 0, planar G, V(G) partitions as (V1,..., Vs, X),

l = @(n/t) such that e start with (non-uniform) Frederickson
) ) . . subdivision
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o X Separates ‘/; from ‘/}.’ (\V/Z # ]) lower bound while preserving an upper bound
. on their boundary
® |N(‘/Z)’ — O(\/E), \V/Z e bin packing type of argument

Step 1.2: Approximate color balance

Theorem: For every t > 0, planar two-colored G with V(G) = RU B

and |B| = |R|, V(G) partitions as (V1,..., Vs, X), £,= ©(n/t) such that
o |V, UN(V;)| = 6(t), Vi. RA

X separates V; from V;, (Vi # 7).

N(Vi)| = O(%/*), Vi

Vin R = [V N B|| = O(Vt), Vi

e compute uniform subdivision with t! =Vt
e greedily create a permutation 7 of the pieces s.t. every prefix has imbalance
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® break 7 into ©(n /t) equal-sized intervals
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From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

Ll _ Y |Lil _ ALG —|Z| _ ALG
min < < < —
o Wil = >, Wi — OPT —|Z| — OPT




From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

elements lost by —_—h
swap out ] |LZ’ Z ‘LZ| ALG — ‘Z’ ALG
< L < <

min

Wil T S, W] T OPT — ZJ\OPT
1. swapout V; NS
2. swapin (V; UN(V;))NO ’

elements staying
elements won by covered during
swap in swaps




From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

Ll o Ll ALG—|Z] _ ALG

min < < < ——

o |(Whl T >0 Wil T OPT — |Z] — OPT

assume ALG < (1 — ¢/vb)OPT where b, t = b?, and ¢ are large enough
constants

s ex. i with |L;| < (1 —¢/vVb)|W;]
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~ ex. 1 with |L;| < (1 — ¢/V/b)|Wj
Step 3: Get perfectly balanced, profitable swap
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Step 2: Obtain a significantly profitable, almost balanced swap

Ll o Ll ALG—|Z] _ ALG

min < < < ——

o |(Whl T >0 Wil T OPT — |Z] — OPT

assume ALG < (1 — ¢/vb)OPT where b, t = b?, and ¢ are large enough
constants

~ ex. 1 with |L;| < (1 — ¢/V/b)|Wj
Step 3: Get perfectly balanced, profitable swap

j—1
S\ <Zi U sg> |
£=1

S1 maximizes |S \ Z;|

S; = arg max
SEO,,;




From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

Ll o Ll ALG—|Z] _ ALG

min < < < ——

o |(Whl T >0 Wil T OPT — |Z] — OPT

assume ALG < (1 — ¢/vb)OPT where b, t = b?, and ¢ are large enough
constants

~ ex. 1 with |L;| < (1 — ¢/V/b)|Wj
Step 3: Get perfectly balanced, profitable swap

S\ ZiU_S 7 .
(=Us)] [(Ys) s

S1 maximizes |S \ Z;|

S; = arg max
SEO,,;
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From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

Ll _ YilLil _ ALG—|Z| _ ALG
MWL S S W] = OPT — [2] = OPT

assume ALG < (1 — ¢/v/b)OPT where b, t = b?, and c are large enough
constants

~ ex. 1 with |L;| < (1 — ¢/V/b)|Wj
Step 3: Get perfectly balanced, profitable swap

Lil< (1= ¢/VD) - W3

- (0

| A |
()
£=1
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From Nearly Balanced to Balanced Swaps

Step 2: Obtain a significantly profitable, almost balanced swap

Ll o Ll ALG—|Z] _ ALG

min < < < ——

o |(Whl T >0 Wil T OPT — |Z] — OPT

assume ALG < (1 — ¢/vb)OPT where b, t = b?, and ¢ are large enough
constants

~ ex. 1 with |L;| < (1 — ¢/v/b)|W;|
Step 3: Get perfectly balanced, profitable swap
O, |

| A5 |
] <H Se) \ Z;

(;Jl Se) \ Z;| . ‘)

~+ balanced and profitable swap

Lil< (1= ¢/VD) - W3

< (1-¢/ V)

I




Overview and Future Work

Theorem:There is a PTAS for any class of max coverage problems that
admits planar (f-separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012
covering points with halfspaces in R3

covering points with pseudodisks in R?

hitting pseudodisks (r-admissable regions) in R? by points
guarding 1.5D terrains

maximum k-dominating set for intersection graphs of homethetic
copies of convex objects (such as arbitrary squares, translated and
scaled copies of convex objects)

e maximum k-dominating set on non-trivial minor-closed graph classes
e maximum k-vertex cover on f-separable on subgraph-closed

graphclasses



Overview and Future Work

Theorem:There is a PTAS for any class of max coverage problems that
admits planar (f-separable) exchange graphs.

Corollary: Max coverage admits a PTAS for

confirms conjecture by Badanidiyuru, Kleinberg, Lee 2012
covering points with halfspaces in R3

covering points with pseudodisks in R?

hitting pseudodisks (r-admissable regions) in R? by points
guarding 1.5D terrains

maximum k-dominating set for intersection graphs of homethetic
copies of convex objects (such as arbitrary squares, translated and
scaled copies of convex objects)

e maximum k-dominating set on non-trivial minor-closed graph classes
e maximum k-vertex cover on f-separable on subgraph-closed

graphclasses

® Improve running time
e improved ratios for APX-hard cases?
e other applications (with hard cardinality constraint)?
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